Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.149.249.84
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/test_half.py
import platform
import pytest

import numpy as np
from numpy import uint16, float16, float32, float64
from numpy.testing import assert_, assert_equal, _OLD_PROMOTION, IS_WASM


def assert_raises_fpe(strmatch, callable, *args, **kwargs):
    try:
        callable(*args, **kwargs)
    except FloatingPointError as exc:
        assert_(str(exc).find(strmatch) >= 0,
                "Did not raise floating point %s error" % strmatch)
    else:
        assert_(False,
                "Did not raise floating point %s error" % strmatch)

class TestHalf:
    def setup_method(self):
        # An array of all possible float16 values
        self.all_f16 = np.arange(0x10000, dtype=uint16)
        self.all_f16.dtype = float16
        self.all_f32 = np.array(self.all_f16, dtype=float32)
        self.all_f64 = np.array(self.all_f16, dtype=float64)

        # An array of all non-NaN float16 values, in sorted order
        self.nonan_f16 = np.concatenate(
                                (np.arange(0xfc00, 0x7fff, -1, dtype=uint16),
                                 np.arange(0x0000, 0x7c01, 1, dtype=uint16)))
        self.nonan_f16.dtype = float16
        self.nonan_f32 = np.array(self.nonan_f16, dtype=float32)
        self.nonan_f64 = np.array(self.nonan_f16, dtype=float64)

        # An array of all finite float16 values, in sorted order
        self.finite_f16 = self.nonan_f16[1:-1]
        self.finite_f32 = self.nonan_f32[1:-1]
        self.finite_f64 = self.nonan_f64[1:-1]

    def test_half_conversions(self):
        """Checks that all 16-bit values survive conversion
           to/from 32-bit and 64-bit float"""
        # Because the underlying routines preserve the NaN bits, every
        # value is preserved when converting to/from other floats.

        # Convert from float32 back to float16
        b = np.array(self.all_f32, dtype=float16)
        assert_equal(self.all_f16.view(dtype=uint16),
                     b.view(dtype=uint16))

        # Convert from float64 back to float16
        b = np.array(self.all_f64, dtype=float16)
        assert_equal(self.all_f16.view(dtype=uint16),
                     b.view(dtype=uint16))

        # Convert float16 to longdouble and back
        # This doesn't necessarily preserve the extra NaN bits,
        # so exclude NaNs.
        a_ld = np.array(self.nonan_f16, dtype=np.longdouble)
        b = np.array(a_ld, dtype=float16)
        assert_equal(self.nonan_f16.view(dtype=uint16),
                     b.view(dtype=uint16))

        # Check the range for which all integers can be represented
        i_int = np.arange(-2048, 2049)
        i_f16 = np.array(i_int, dtype=float16)
        j = np.array(i_f16, dtype=int)
        assert_equal(i_int, j)

    @pytest.mark.parametrize("string_dt", ["S", "U"])
    def test_half_conversion_to_string(self, string_dt):
        # Currently uses S/U32 (which is sufficient for float32)
        expected_dt = np.dtype(f"{string_dt}32")
        assert np.promote_types(np.float16, string_dt) == expected_dt
        assert np.promote_types(string_dt, np.float16) == expected_dt

        arr = np.ones(3, dtype=np.float16).astype(string_dt)
        assert arr.dtype == expected_dt

    @pytest.mark.parametrize("string_dt", ["S", "U"])
    def test_half_conversion_from_string(self, string_dt):
        string = np.array("3.1416", dtype=string_dt)
        assert string.astype(np.float16) == np.array(3.1416, dtype=np.float16)

    @pytest.mark.parametrize("offset", [None, "up", "down"])
    @pytest.mark.parametrize("shift", [None, "up", "down"])
    @pytest.mark.parametrize("float_t", [np.float32, np.float64])
    @np._no_nep50_warning()
    def test_half_conversion_rounding(self, float_t, shift, offset):
        # Assumes that round to even is used during casting.
        max_pattern = np.float16(np.finfo(np.float16).max).view(np.uint16)

        # Test all (positive) finite numbers, denormals are most interesting
        # however:
        f16s_patterns = np.arange(0, max_pattern+1, dtype=np.uint16)
        f16s_float = f16s_patterns.view(np.float16).astype(float_t)

        # Shift the values by half a bit up or a down (or do not shift),
        if shift == "up":
            f16s_float = 0.5 * (f16s_float[:-1] + f16s_float[1:])[1:]
        elif shift == "down":
            f16s_float = 0.5 * (f16s_float[:-1] + f16s_float[1:])[:-1]
        else:
            f16s_float = f16s_float[1:-1]

        # Increase the float by a minimal value:
        if offset == "up":
            f16s_float = np.nextafter(f16s_float, float_t(np.inf))
        elif offset == "down":
            f16s_float = np.nextafter(f16s_float, float_t(-np.inf))

        # Convert back to float16 and its bit pattern:
        res_patterns = f16s_float.astype(np.float16).view(np.uint16)

        # The above calculations tries the original values, or the exact
        # mid points between the float16 values. It then further offsets them
        # by as little as possible. If no offset occurs, "round to even"
        # logic will be necessary, an arbitrarily small offset should cause
        # normal up/down rounding always.

        # Calculate the expected pattern:
        cmp_patterns = f16s_patterns[1:-1].copy()

        if shift == "down" and offset != "up":
            shift_pattern = -1
        elif shift == "up" and offset != "down":
            shift_pattern = 1
        else:
            # There cannot be a shift, either shift is None, so all rounding
            # will go back to original, or shift is reduced by offset too much.
            shift_pattern = 0

        # If rounding occurs, is it normal rounding or round to even?
        if offset is None:
            # Round to even occurs, modify only non-even, cast to allow + (-1)
            cmp_patterns[0::2].view(np.int16)[...] += shift_pattern
        else:
            cmp_patterns.view(np.int16)[...] += shift_pattern

        assert_equal(res_patterns, cmp_patterns)

    @pytest.mark.parametrize(["float_t", "uint_t", "bits"],
                             [(np.float32, np.uint32, 23),
                              (np.float64, np.uint64, 52)])
    def test_half_conversion_denormal_round_even(self, float_t, uint_t, bits):
        # Test specifically that all bits are considered when deciding
        # whether round to even should occur (i.e. no bits are lost at the
        # end. Compare also gh-12721. The most bits can get lost for the
        # smallest denormal:
        smallest_value = np.uint16(1).view(np.float16).astype(float_t)
        assert smallest_value == 2**-24

        # Will be rounded to zero based on round to even rule:
        rounded_to_zero = smallest_value / float_t(2)
        assert rounded_to_zero.astype(np.float16) == 0

        # The significand will be all 0 for the float_t, test that we do not
        # lose the lower ones of these:
        for i in range(bits):
            # slightly increasing the value should make it round up:
            larger_pattern = rounded_to_zero.view(uint_t) | uint_t(1 << i)
            larger_value = larger_pattern.view(float_t)
            assert larger_value.astype(np.float16) == smallest_value

    def test_nans_infs(self):
        with np.errstate(all='ignore'):
            # Check some of the ufuncs
            assert_equal(np.isnan(self.all_f16), np.isnan(self.all_f32))
            assert_equal(np.isinf(self.all_f16), np.isinf(self.all_f32))
            assert_equal(np.isfinite(self.all_f16), np.isfinite(self.all_f32))
            assert_equal(np.signbit(self.all_f16), np.signbit(self.all_f32))
            assert_equal(np.spacing(float16(65504)), np.inf)

            # Check comparisons of all values with NaN
            nan = float16(np.nan)

            assert_(not (self.all_f16 == nan).any())
            assert_(not (nan == self.all_f16).any())

            assert_((self.all_f16 != nan).all())
            assert_((nan != self.all_f16).all())

            assert_(not (self.all_f16 < nan).any())
            assert_(not (nan < self.all_f16).any())

            assert_(not (self.all_f16 <= nan).any())
            assert_(not (nan <= self.all_f16).any())

            assert_(not (self.all_f16 > nan).any())
            assert_(not (nan > self.all_f16).any())

            assert_(not (self.all_f16 >= nan).any())
            assert_(not (nan >= self.all_f16).any())

    def test_half_values(self):
        """Confirms a small number of known half values"""
        a = np.array([1.0, -1.0,
                      2.0, -2.0,
                      0.0999755859375, 0.333251953125,  # 1/10, 1/3
                      65504, -65504,           # Maximum magnitude
                      2.0**(-14), -2.0**(-14),  # Minimum normal
                      2.0**(-24), -2.0**(-24),  # Minimum subnormal
                      0, -1/1e1000,            # Signed zeros
                      np.inf, -np.inf])
        b = np.array([0x3c00, 0xbc00,
                      0x4000, 0xc000,
                      0x2e66, 0x3555,
                      0x7bff, 0xfbff,
                      0x0400, 0x8400,
                      0x0001, 0x8001,
                      0x0000, 0x8000,
                      0x7c00, 0xfc00], dtype=uint16)
        b.dtype = float16
        assert_equal(a, b)

    def test_half_rounding(self):
        """Checks that rounding when converting to half is correct"""
        a = np.array([2.0**-25 + 2.0**-35,  # Rounds to minimum subnormal
                      2.0**-25,       # Underflows to zero (nearest even mode)
                      2.0**-26,       # Underflows to zero
                      1.0+2.0**-11 + 2.0**-16,  # rounds to 1.0+2**(-10)
                      1.0+2.0**-11,   # rounds to 1.0 (nearest even mode)
                      1.0+2.0**-12,   # rounds to 1.0
                      65519,          # rounds to 65504
                      65520],         # rounds to inf
                      dtype=float64)
        rounded = [2.0**-24,
                   0.0,
                   0.0,
                   1.0+2.0**(-10),
                   1.0,
                   1.0,
                   65504,
                   np.inf]

        # Check float64->float16 rounding
        with np.errstate(over="ignore"):
            b = np.array(a, dtype=float16)
        assert_equal(b, rounded)

        # Check float32->float16 rounding
        a = np.array(a, dtype=float32)
        with np.errstate(over="ignore"):
            b = np.array(a, dtype=float16)
        assert_equal(b, rounded)

    def test_half_correctness(self):
        """Take every finite float16, and check the casting functions with
           a manual conversion."""

        # Create an array of all finite float16s
        a_bits = self.finite_f16.view(dtype=uint16)

        # Convert to 64-bit float manually
        a_sgn = (-1.0)**((a_bits & 0x8000) >> 15)
        a_exp = np.array((a_bits & 0x7c00) >> 10, dtype=np.int32) - 15
        a_man = (a_bits & 0x03ff) * 2.0**(-10)
        # Implicit bit of normalized floats
        a_man[a_exp != -15] += 1
        # Denormalized exponent is -14
        a_exp[a_exp == -15] = -14

        a_manual = a_sgn * a_man * 2.0**a_exp

        a32_fail = np.nonzero(self.finite_f32 != a_manual)[0]
        if len(a32_fail) != 0:
            bad_index = a32_fail[0]
            assert_equal(self.finite_f32, a_manual,
                 "First non-equal is half value %x -> %g != %g" %
                            (self.finite_f16[bad_index],
                             self.finite_f32[bad_index],
                             a_manual[bad_index]))

        a64_fail = np.nonzero(self.finite_f64 != a_manual)[0]
        if len(a64_fail) != 0:
            bad_index = a64_fail[0]
            assert_equal(self.finite_f64, a_manual,
                 "First non-equal is half value %x -> %g != %g" %
                            (self.finite_f16[bad_index],
                             self.finite_f64[bad_index],
                             a_manual[bad_index]))

    def test_half_ordering(self):
        """Make sure comparisons are working right"""

        # All non-NaN float16 values in reverse order
        a = self.nonan_f16[::-1].copy()

        # 32-bit float copy
        b = np.array(a, dtype=float32)

        # Should sort the same
        a.sort()
        b.sort()
        assert_equal(a, b)

        # Comparisons should work
        assert_((a[:-1] <= a[1:]).all())
        assert_(not (a[:-1] > a[1:]).any())
        assert_((a[1:] >= a[:-1]).all())
        assert_(not (a[1:] < a[:-1]).any())
        # All != except for +/-0
        assert_equal(np.nonzero(a[:-1] < a[1:])[0].size, a.size-2)
        assert_equal(np.nonzero(a[1:] > a[:-1])[0].size, a.size-2)

    def test_half_funcs(self):
        """Test the various ArrFuncs"""

        # fill
        assert_equal(np.arange(10, dtype=float16),
                     np.arange(10, dtype=float32))

        # fillwithscalar
        a = np.zeros((5,), dtype=float16)
        a.fill(1)
        assert_equal(a, np.ones((5,), dtype=float16))

        # nonzero and copyswap
        a = np.array([0, 0, -1, -1/1e20, 0, 2.0**-24, 7.629e-6], dtype=float16)
        assert_equal(a.nonzero()[0],
                     [2, 5, 6])
        a = a.byteswap().newbyteorder()
        assert_equal(a.nonzero()[0],
                     [2, 5, 6])

        # dot
        a = np.arange(0, 10, 0.5, dtype=float16)
        b = np.ones((20,), dtype=float16)
        assert_equal(np.dot(a, b),
                     95)

        # argmax
        a = np.array([0, -np.inf, -2, 0.5, 12.55, 7.3, 2.1, 12.4], dtype=float16)
        assert_equal(a.argmax(),
                     4)
        a = np.array([0, -np.inf, -2, np.inf, 12.55, np.nan, 2.1, 12.4], dtype=float16)
        assert_equal(a.argmax(),
                     5)

        # getitem
        a = np.arange(10, dtype=float16)
        for i in range(10):
            assert_equal(a.item(i), i)

    def test_spacing_nextafter(self):
        """Test np.spacing and np.nextafter"""
        # All non-negative finite #'s
        a = np.arange(0x7c00, dtype=uint16)
        hinf = np.array((np.inf,), dtype=float16)
        hnan = np.array((np.nan,), dtype=float16)
        a_f16 = a.view(dtype=float16)

        assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1])

        assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
        assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])

        assert_equal(np.nextafter(hinf, a_f16), a_f16[-1])
        assert_equal(np.nextafter(-hinf, a_f16), -a_f16[-1])

        assert_equal(np.nextafter(hinf, hinf), hinf)
        assert_equal(np.nextafter(hinf, -hinf), a_f16[-1])
        assert_equal(np.nextafter(-hinf, hinf), -a_f16[-1])
        assert_equal(np.nextafter(-hinf, -hinf), -hinf)

        assert_equal(np.nextafter(a_f16, hnan), hnan[0])
        assert_equal(np.nextafter(hnan, a_f16), hnan[0])

        assert_equal(np.nextafter(hnan, hnan), hnan)
        assert_equal(np.nextafter(hinf, hnan), hnan)
        assert_equal(np.nextafter(hnan, hinf), hnan)

        # switch to negatives
        a |= 0x8000

        assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
        assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:])

        assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
        assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])

        assert_equal(np.nextafter(hinf, a_f16), -a_f16[-1])
        assert_equal(np.nextafter(-hinf, a_f16), a_f16[-1])

        assert_equal(np.nextafter(a_f16, hnan), hnan[0])
        assert_equal(np.nextafter(hnan, a_f16), hnan[0])

    def test_half_ufuncs(self):
        """Test the various ufuncs"""

        a = np.array([0, 1, 2, 4, 2], dtype=float16)
        b = np.array([-2, 5, 1, 4, 3], dtype=float16)
        c = np.array([0, -1, -np.inf, np.nan, 6], dtype=float16)

        assert_equal(np.add(a, b), [-2, 6, 3, 8, 5])
        assert_equal(np.subtract(a, b), [2, -4, 1, 0, -1])
        assert_equal(np.multiply(a, b), [0, 5, 2, 16, 6])
        assert_equal(np.divide(a, b), [0, 0.199951171875, 2, 1, 0.66650390625])

        assert_equal(np.equal(a, b), [False, False, False, True, False])
        assert_equal(np.not_equal(a, b), [True, True, True, False, True])
        assert_equal(np.less(a, b), [False, True, False, False, True])
        assert_equal(np.less_equal(a, b), [False, True, False, True, True])
        assert_equal(np.greater(a, b), [True, False, True, False, False])
        assert_equal(np.greater_equal(a, b), [True, False, True, True, False])
        assert_equal(np.logical_and(a, b), [False, True, True, True, True])
        assert_equal(np.logical_or(a, b), [True, True, True, True, True])
        assert_equal(np.logical_xor(a, b), [True, False, False, False, False])
        assert_equal(np.logical_not(a), [True, False, False, False, False])

        assert_equal(np.isnan(c), [False, False, False, True, False])
        assert_equal(np.isinf(c), [False, False, True, False, False])
        assert_equal(np.isfinite(c), [True, True, False, False, True])
        assert_equal(np.signbit(b), [True, False, False, False, False])

        assert_equal(np.copysign(b, a), [2, 5, 1, 4, 3])

        assert_equal(np.maximum(a, b), [0, 5, 2, 4, 3])

        x = np.maximum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [0, 5, 1, 0, 6])

        assert_equal(np.minimum(a, b), [-2, 1, 1, 4, 2])

        x = np.minimum(b, c)
        assert_(np.isnan(x[3]))
        x[3] = 0
        assert_equal(x, [-2, -1, -np.inf, 0, 3])

        assert_equal(np.fmax(a, b), [0, 5, 2, 4, 3])
        assert_equal(np.fmax(b, c), [0, 5, 1, 4, 6])
        assert_equal(np.fmin(a, b), [-2, 1, 1, 4, 2])
        assert_equal(np.fmin(b, c), [-2, -1, -np.inf, 4, 3])

        assert_equal(np.floor_divide(a, b), [0, 0, 2, 1, 0])
        assert_equal(np.remainder(a, b), [0, 1, 0, 0, 2])
        assert_equal(np.divmod(a, b), ([0, 0, 2, 1, 0], [0, 1, 0, 0, 2]))
        assert_equal(np.square(b), [4, 25, 1, 16, 9])
        assert_equal(np.reciprocal(b), [-0.5, 0.199951171875, 1, 0.25, 0.333251953125])
        assert_equal(np.ones_like(b), [1, 1, 1, 1, 1])
        assert_equal(np.conjugate(b), b)
        assert_equal(np.absolute(b), [2, 5, 1, 4, 3])
        assert_equal(np.negative(b), [2, -5, -1, -4, -3])
        assert_equal(np.positive(b), b)
        assert_equal(np.sign(b), [-1, 1, 1, 1, 1])
        assert_equal(np.modf(b), ([0, 0, 0, 0, 0], b))
        assert_equal(np.frexp(b), ([-0.5, 0.625, 0.5, 0.5, 0.75], [2, 3, 1, 3, 2]))
        assert_equal(np.ldexp(b, [0, 1, 2, 4, 2]), [-2, 10, 4, 64, 12])

    @np._no_nep50_warning()
    def test_half_coercion(self, weak_promotion):
        """Test that half gets coerced properly with the other types"""
        a16 = np.array((1,), dtype=float16)
        a32 = np.array((1,), dtype=float32)
        b16 = float16(1)
        b32 = float32(1)

        assert np.power(a16, 2).dtype == float16
        assert np.power(a16, 2.0).dtype == float16
        assert np.power(a16, b16).dtype == float16
        expected_dt = float32 if weak_promotion else float16
        assert np.power(a16, b32).dtype == expected_dt
        assert np.power(a16, a16).dtype == float16
        assert np.power(a16, a32).dtype == float32

        expected_dt = float16 if weak_promotion else float64
        assert np.power(b16, 2).dtype == expected_dt
        assert np.power(b16, 2.0).dtype == expected_dt
        assert np.power(b16, b16).dtype, float16
        assert np.power(b16, b32).dtype, float32
        assert np.power(b16, a16).dtype, float16
        assert np.power(b16, a32).dtype, float32

        assert np.power(a32, a16).dtype == float32
        assert np.power(a32, b16).dtype == float32
        expected_dt = float32 if weak_promotion else float16
        assert np.power(b32, a16).dtype == expected_dt
        assert np.power(b32, b16).dtype == float32

    @pytest.mark.skipif(platform.machine() == "armv5tel",
                        reason="See gh-413.")
    @pytest.mark.skipif(IS_WASM,
                        reason="fp exceptions don't work in wasm.")
    def test_half_fpe(self):
        with np.errstate(all='raise'):
            sx16 = np.array((1e-4,), dtype=float16)
            bx16 = np.array((1e4,), dtype=float16)
            sy16 = float16(1e-4)
            by16 = float16(1e4)

            # Underflow errors
            assert_raises_fpe('underflow', lambda a, b:a*b, sx16, sx16)
            assert_raises_fpe('underflow', lambda a, b:a*b, sx16, sy16)
            assert_raises_fpe('underflow', lambda a, b:a*b, sy16, sx16)
            assert_raises_fpe('underflow', lambda a, b:a*b, sy16, sy16)
            assert_raises_fpe('underflow', lambda a, b:a/b, sx16, bx16)
            assert_raises_fpe('underflow', lambda a, b:a/b, sx16, by16)
            assert_raises_fpe('underflow', lambda a, b:a/b, sy16, bx16)
            assert_raises_fpe('underflow', lambda a, b:a/b, sy16, by16)
            assert_raises_fpe('underflow', lambda a, b:a/b,
                                             float16(2.**-14), float16(2**11))
            assert_raises_fpe('underflow', lambda a, b:a/b,
                                             float16(-2.**-14), float16(2**11))
            assert_raises_fpe('underflow', lambda a, b:a/b,
                                             float16(2.**-14+2**-24), float16(2))
            assert_raises_fpe('underflow', lambda a, b:a/b,
                                             float16(-2.**-14-2**-24), float16(2))
            assert_raises_fpe('underflow', lambda a, b:a/b,
                                             float16(2.**-14+2**-23), float16(4))

            # Overflow errors
            assert_raises_fpe('overflow', lambda a, b:a*b, bx16, bx16)
            assert_raises_fpe('overflow', lambda a, b:a*b, bx16, by16)
            assert_raises_fpe('overflow', lambda a, b:a*b, by16, bx16)
            assert_raises_fpe('overflow', lambda a, b:a*b, by16, by16)
            assert_raises_fpe('overflow', lambda a, b:a/b, bx16, sx16)
            assert_raises_fpe('overflow', lambda a, b:a/b, bx16, sy16)
            assert_raises_fpe('overflow', lambda a, b:a/b, by16, sx16)
            assert_raises_fpe('overflow', lambda a, b:a/b, by16, sy16)
            assert_raises_fpe('overflow', lambda a, b:a+b,
                                             float16(65504), float16(17))
            assert_raises_fpe('overflow', lambda a, b:a-b,
                                             float16(-65504), float16(17))
            assert_raises_fpe('overflow', np.nextafter, float16(65504), float16(np.inf))
            assert_raises_fpe('overflow', np.nextafter, float16(-65504), float16(-np.inf))
            assert_raises_fpe('overflow', np.spacing, float16(65504))

            # Invalid value errors
            assert_raises_fpe('invalid', np.divide, float16(np.inf), float16(np.inf))
            assert_raises_fpe('invalid', np.spacing, float16(np.inf))
            assert_raises_fpe('invalid', np.spacing, float16(np.nan))

            # These should not raise
            float16(65472)+float16(32)
            float16(2**-13)/float16(2)
            float16(2**-14)/float16(2**10)
            np.spacing(float16(-65504))
            np.nextafter(float16(65504), float16(-np.inf))
            np.nextafter(float16(-65504), float16(np.inf))
            np.nextafter(float16(np.inf), float16(0))
            np.nextafter(float16(-np.inf), float16(0))
            np.nextafter(float16(0), float16(np.nan))
            np.nextafter(float16(np.nan), float16(0))
            float16(2**-14)/float16(2**10)
            float16(-2**-14)/float16(2**10)
            float16(2**-14+2**-23)/float16(2)
            float16(-2**-14-2**-23)/float16(2)

    def test_half_array_interface(self):
        """Test that half is compatible with __array_interface__"""
        class Dummy:
            pass

        a = np.ones((1,), dtype=float16)
        b = Dummy()
        b.__array_interface__ = a.__array_interface__
        c = np.array(b)
        assert_(c.dtype == float16)
        assert_equal(a, c)

Youez - 2016 - github.com/yon3zu
LinuXploit