Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.116.28.79
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/ruby30/share/ruby/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/alt/ruby30/share/ruby/prime.rb
# frozen_string_literal: false
#
# = prime.rb
#
# Prime numbers and factorization library.
#
# Copyright::
#   Copyright (c) 1998-2008 Keiju ISHITSUKA(SHL Japan Inc.)
#   Copyright (c) 2008 Yuki Sonoda (Yugui) <yugui@yugui.jp>
#
# Documentation::
#   Yuki Sonoda
#

require "singleton"
require "forwardable"

class Integer
  # Re-composes a prime factorization and returns the product.
  #
  # See Prime#int_from_prime_division for more details.
  def Integer.from_prime_division(pd)
    Prime.int_from_prime_division(pd)
  end

  # Returns the factorization of +self+.
  #
  # See Prime#prime_division for more details.
  def prime_division(generator = Prime::Generator23.new)
    Prime.prime_division(self, generator)
  end

  # Returns true if +self+ is a prime number, else returns false.
  # Not recommended for very big integers (> 10**23).
  def prime?
    return self >= 2 if self <= 3

    if (bases = miller_rabin_bases)
      return miller_rabin_test(bases)
    end

    return true if self == 5
    return false unless 30.gcd(self) == 1
    (7..Integer.sqrt(self)).step(30) do |p|
      return false if
        self%(p)    == 0 || self%(p+4)  == 0 || self%(p+6)  == 0 || self%(p+10) == 0 ||
        self%(p+12) == 0 || self%(p+16) == 0 || self%(p+22) == 0 || self%(p+24) == 0
    end
    true
  end

  MILLER_RABIN_BASES = [
    [2],
    [2,3],
    [31,73],
    [2,3,5],
    [2,3,5,7],
    [2,7,61],
    [2,13,23,1662803],
    [2,3,5,7,11],
    [2,3,5,7,11,13],
    [2,3,5,7,11,13,17],
    [2,3,5,7,11,13,17,19,23],
    [2,3,5,7,11,13,17,19,23,29,31,37],
    [2,3,5,7,11,13,17,19,23,29,31,37,41],
  ].map!(&:freeze).freeze
  private_constant :MILLER_RABIN_BASES

  private def miller_rabin_bases
    # Miller-Rabin's complexity is O(k log^3n).
    # So we can reduce the complexity by reducing the number of bases tested.
    # Using values from https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test
    i = case
    when self < 0xffff                            then
      # For small integers, Miller Rabin can be slower
      # There is no mathematical significance to 0xffff
      return nil
  # when self < 2_047                             then 0
    when self < 1_373_653                         then 1
    when self < 9_080_191                         then 2
    when self < 25_326_001                        then 3
    when self < 3_215_031_751                     then 4
    when self < 4_759_123_141                     then 5
    when self < 1_122_004_669_633                 then 6
    when self < 2_152_302_898_747                 then 7
    when self < 3_474_749_660_383                 then 8
    when self < 341_550_071_728_321               then 9
    when self < 3_825_123_056_546_413_051         then 10
    when self < 318_665_857_834_031_151_167_461   then 11
    when self < 3_317_044_064_679_887_385_961_981 then 12
    else return nil
    end
    MILLER_RABIN_BASES[i]
  end

  private def miller_rabin_test(bases)
    return false if even?

    r = 0
    d = self >> 1
    while d.even?
      d >>= 1
      r += 1
    end

    self_minus_1 = self-1
    bases.each do |a|
      x = a.pow(d, self)
      next if x == 1 || x == self_minus_1 || a == self

      return false if r.times do
        x = x.pow(2, self)
        break if x == self_minus_1
      end
    end
    true
  end

  # Iterates the given block over all prime numbers.
  #
  # See +Prime+#each for more details.
  def Integer.each_prime(ubound, &block) # :yields: prime
    Prime.each(ubound, &block)
  end
end

#
# The set of all prime numbers.
#
# == Example
#
#   Prime.each(100) do |prime|
#     p prime  #=> 2, 3, 5, 7, 11, ...., 97
#   end
#
# Prime is Enumerable:
#
#   Prime.first 5 # => [2, 3, 5, 7, 11]
#
# == Retrieving the instance
#
# For convenience, each instance method of +Prime+.instance can be accessed
# as a class method of +Prime+.
#
# e.g.
#   Prime.instance.prime?(2)  #=> true
#   Prime.prime?(2)           #=> true
#
# == Generators
#
# A "generator" provides an implementation of enumerating pseudo-prime
# numbers and it remembers the position of enumeration and upper bound.
# Furthermore, it is an external iterator of prime enumeration which is
# compatible with an Enumerator.
#
# +Prime+::+PseudoPrimeGenerator+ is the base class for generators.
# There are few implementations of generator.
#
# [+Prime+::+EratosthenesGenerator+]
#   Uses Eratosthenes' sieve.
# [+Prime+::+TrialDivisionGenerator+]
#   Uses the trial division method.
# [+Prime+::+Generator23+]
#   Generates all positive integers which are not divisible by either 2 or 3.
#   This sequence is very bad as a pseudo-prime sequence. But this
#   is faster and uses much less memory than the other generators. So,
#   it is suitable for factorizing an integer which is not large but
#   has many prime factors. e.g. for Prime#prime? .

class Prime

  VERSION = "0.1.2"

  include Enumerable
  include Singleton

  class << self
    extend Forwardable
    include Enumerable

    def method_added(method) # :nodoc:
      (class<< self;self;end).def_delegator :instance, method
    end
  end

  # Iterates the given block over all prime numbers.
  #
  # == Parameters
  #
  # +ubound+::
  #   Optional. An arbitrary positive number.
  #   The upper bound of enumeration. The method enumerates
  #   prime numbers infinitely if +ubound+ is nil.
  # +generator+::
  #   Optional. An implementation of pseudo-prime generator.
  #
  # == Return value
  #
  # An evaluated value of the given block at the last time.
  # Or an enumerator which is compatible to an +Enumerator+
  # if no block given.
  #
  # == Description
  #
  # Calls +block+ once for each prime number, passing the prime as
  # a parameter.
  #
  # +ubound+::
  #   Upper bound of prime numbers. The iterator stops after it
  #   yields all prime numbers p <= +ubound+.
  #
  def each(ubound = nil, generator = EratosthenesGenerator.new, &block)
    generator.upper_bound = ubound
    generator.each(&block)
  end

  # Returns true if +obj+ is an Integer and is prime.  Also returns
  # true if +obj+ is a Module that is an ancestor of +Prime+.
  # Otherwise returns false.
  def include?(obj)
    case obj
    when Integer
      prime?(obj)
    when Module
      Module.instance_method(:include?).bind(Prime).call(obj)
    else
      false
    end
  end

  # Returns true if +value+ is a prime number, else returns false.
  # Integer#prime? is much more performant.
  #
  # == Parameters
  #
  # +value+:: an arbitrary integer to be checked.
  # +generator+:: optional. A pseudo-prime generator.
  def prime?(value, generator = Prime::Generator23.new)
    raise ArgumentError, "Expected a prime generator, got #{generator}" unless generator.respond_to? :each
    raise ArgumentError, "Expected an integer, got #{value}" unless value.respond_to?(:integer?) && value.integer?
    return false if value < 2
    generator.each do |num|
      q,r = value.divmod num
      return true if q < num
      return false if r == 0
    end
  end

  # Re-composes a prime factorization and returns the product.
  #
  # For the decomposition:
  #
  #   [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]],
  #
  # it returns:
  #
  #   p_1**e_1 * p_2**e_2 * ... * p_n**e_n.
  #
  # == Parameters
  # +pd+:: Array of pairs of integers.
  #        Each pair consists of a prime number -- a prime factor --
  #        and a natural number -- its exponent (multiplicity).
  #
  # == Example
  #   Prime.int_from_prime_division([[3, 2], [5, 1]])  #=> 45
  #   3**2 * 5                                         #=> 45
  #
  def int_from_prime_division(pd)
    pd.inject(1){|value, (prime, index)|
      value * prime**index
    }
  end

  # Returns the factorization of +value+.
  #
  # For an arbitrary integer:
  #
  #   p_1**e_1 * p_2**e_2 * ... * p_n**e_n,
  #
  # prime_division returns an array of pairs of integers:
  #
  #   [[p_1, e_1], [p_2, e_2], ..., [p_n, e_n]].
  #
  # Each pair consists of a prime number -- a prime factor --
  # and a natural number -- its exponent (multiplicity).
  #
  # == Parameters
  # +value+:: An arbitrary integer.
  # +generator+:: Optional. A pseudo-prime generator.
  #               +generator+.succ must return the next
  #               pseudo-prime number in ascending order.
  #               It must generate all prime numbers,
  #               but may also generate non-prime numbers, too.
  #
  # === Exceptions
  # +ZeroDivisionError+:: when +value+ is zero.
  #
  # == Example
  #
  #   Prime.prime_division(45)  #=> [[3, 2], [5, 1]]
  #   3**2 * 5                  #=> 45
  #
  def prime_division(value, generator = Prime::Generator23.new)
    raise ZeroDivisionError if value == 0
    if value < 0
      value = -value
      pv = [[-1, 1]]
    else
      pv = []
    end
    generator.each do |prime|
      count = 0
      while (value1, mod = value.divmod(prime)
             mod) == 0
        value = value1
        count += 1
      end
      if count != 0
        pv.push [prime, count]
      end
      break if value1 <= prime
    end
    if value > 1
      pv.push [value, 1]
    end
    pv
  end

  # An abstract class for enumerating pseudo-prime numbers.
  #
  # Concrete subclasses should override succ, next, rewind.
  class PseudoPrimeGenerator
    include Enumerable

    def initialize(ubound = nil)
      @ubound = ubound
    end

    def upper_bound=(ubound)
      @ubound = ubound
    end
    def upper_bound
      @ubound
    end

    # returns the next pseudo-prime number, and move the internal
    # position forward.
    #
    # +PseudoPrimeGenerator+#succ raises +NotImplementedError+.
    def succ
      raise NotImplementedError, "need to define `succ'"
    end

    # alias of +succ+.
    def next
      raise NotImplementedError, "need to define `next'"
    end

    # Rewinds the internal position for enumeration.
    #
    # See +Enumerator+#rewind.
    def rewind
      raise NotImplementedError, "need to define `rewind'"
    end

    # Iterates the given block for each prime number.
    def each
      return self.dup unless block_given?
      if @ubound
        last_value = nil
        loop do
          prime = succ
          break last_value if prime > @ubound
          last_value = yield prime
        end
      else
        loop do
          yield succ
        end
      end
    end

    # see +Enumerator+#with_index.
    def with_index(offset = 0, &block)
      return enum_for(:with_index, offset) { Float::INFINITY } unless block
      return each_with_index(&block) if offset == 0

      each do |prime|
        yield prime, offset
        offset += 1
      end
    end

    # see +Enumerator+#with_object.
    def with_object(obj)
      return enum_for(:with_object, obj) { Float::INFINITY } unless block_given?
      each do |prime|
        yield prime, obj
      end
    end

    def size
      Float::INFINITY
    end
  end

  # An implementation of +PseudoPrimeGenerator+.
  #
  # Uses +EratosthenesSieve+.
  class EratosthenesGenerator < PseudoPrimeGenerator
    def initialize
      @last_prime_index = -1
      super
    end

    def succ
      @last_prime_index += 1
      EratosthenesSieve.instance.get_nth_prime(@last_prime_index)
    end
    def rewind
      initialize
    end
    alias next succ
  end

  # An implementation of +PseudoPrimeGenerator+ which uses
  # a prime table generated by trial division.
  class TrialDivisionGenerator < PseudoPrimeGenerator
    def initialize
      @index = -1
      super
    end

    def succ
      TrialDivision.instance[@index += 1]
    end
    def rewind
      initialize
    end
    alias next succ
  end

  # Generates all integers which are greater than 2 and
  # are not divisible by either 2 or 3.
  #
  # This is a pseudo-prime generator, suitable on
  # checking primality of an integer by brute force
  # method.
  class Generator23 < PseudoPrimeGenerator
    def initialize
      @prime = 1
      @step = nil
      super
    end

    def succ
      if (@step)
        @prime += @step
        @step = 6 - @step
      else
        case @prime
        when 1; @prime = 2
        when 2; @prime = 3
        when 3; @prime = 5; @step = 2
        end
      end
      @prime
    end
    alias next succ
    def rewind
      initialize
    end
  end

  # Internal use. An implementation of prime table by trial division method.
  class TrialDivision
    include Singleton

    def initialize # :nodoc:
      # These are included as class variables to cache them for later uses.  If memory
      #   usage is a problem, they can be put in Prime#initialize as instance variables.

      # There must be no primes between @primes[-1] and @next_to_check.
      @primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
      # @next_to_check % 6 must be 1.
      @next_to_check = 103            # @primes[-1] - @primes[-1] % 6 + 7
      @ulticheck_index = 3            # @primes.index(@primes.reverse.find {|n|
      #   n < Math.sqrt(@@next_to_check) })
      @ulticheck_next_squared = 121   # @primes[@ulticheck_index + 1] ** 2
    end

    # Returns the +index+th prime number.
    #
    # +index+ is a 0-based index.
    def [](index)
      while index >= @primes.length
        # Only check for prime factors up to the square root of the potential primes,
        #   but without the performance hit of an actual square root calculation.
        if @next_to_check + 4 > @ulticheck_next_squared
          @ulticheck_index += 1
          @ulticheck_next_squared = @primes.at(@ulticheck_index + 1) ** 2
        end
        # Only check numbers congruent to one and five, modulo six. All others

        #   are divisible by two or three.  This also allows us to skip checking against
        #   two and three.
        @primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
        @next_to_check += 4
        @primes.push @next_to_check if @primes[2..@ulticheck_index].find {|prime| @next_to_check % prime == 0 }.nil?
        @next_to_check += 2
      end
      @primes[index]
    end
  end

  # Internal use. An implementation of Eratosthenes' sieve
  class EratosthenesSieve
    include Singleton

    def initialize
      @primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101]
      # @max_checked must be an even number
      @max_checked = @primes.last + 1
    end

    def get_nth_prime(n)
      compute_primes while @primes.size <= n
      @primes[n]
    end

    private
    def compute_primes
      # max_segment_size must be an even number
      max_segment_size = 1e6.to_i
      max_cached_prime = @primes.last
      # do not double count primes if #compute_primes is interrupted
      # by Timeout.timeout
      @max_checked = max_cached_prime + 1 if max_cached_prime > @max_checked

      segment_min = @max_checked
      segment_max = [segment_min + max_segment_size, max_cached_prime * 2].min
      root = Integer.sqrt(segment_max)

      segment = ((segment_min + 1) .. segment_max).step(2).to_a

      (1..Float::INFINITY).each do |sieving|
        prime = @primes[sieving]
        break if prime > root
        composite_index = (-(segment_min + 1 + prime) / 2) % prime
        while composite_index < segment.size do
          segment[composite_index] = nil
          composite_index += prime
        end
      end

      @primes.concat(segment.compact!)

      @max_checked = segment_max
    end
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit