Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.116.36.205
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/usr/include/sys/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/usr/include/sys/queue.h
/*
 * Copyright (c) 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
 */

#ifndef	_SYS_QUEUE_H_
#define	_SYS_QUEUE_H_

/*
 * This file defines five types of data structures: singly-linked lists,
 * lists, simple queues, tail queues, and circular queues.
 *
 * A singly-linked list is headed by a single forward pointer. The
 * elements are singly linked for minimum space and pointer manipulation
 * overhead at the expense of O(n) removal for arbitrary elements. New
 * elements can be added to the list after an existing element or at the
 * head of the list.  Elements being removed from the head of the list
 * should use the explicit macro for this purpose for optimum
 * efficiency. A singly-linked list may only be traversed in the forward
 * direction.  Singly-linked lists are ideal for applications with large
 * datasets and few or no removals or for implementing a LIFO queue.
 *
 * A list is headed by a single forward pointer (or an array of forward
 * pointers for a hash table header). The elements are doubly linked
 * so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before
 * or after an existing element or at the head of the list. A list
 * may only be traversed in the forward direction.
 *
 * A simple queue is headed by a pair of pointers, one the head of the
 * list and the other to the tail of the list. The elements are singly
 * linked to save space, so elements can only be removed from the
 * head of the list. New elements can be added to the list after
 * an existing element, at the head of the list, or at the end of the
 * list. A simple queue may only be traversed in the forward direction.
 *
 * A tail queue is headed by a pair of pointers, one to the head of the
 * list and the other to the tail of the list. The elements are doubly
 * linked so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before or
 * after an existing element, at the head of the list, or at the end of
 * the list. A tail queue may be traversed in either direction.
 *
 * A circle queue is headed by a pair of pointers, one to the head of the
 * list and the other to the tail of the list. The elements are doubly
 * linked so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before or after
 * an existing element, at the head of the list, or at the end of the list.
 * A circle queue may be traversed in either direction, but has a more
 * complex end of list detection.
 *
 * For details on the use of these macros, see the queue(3) manual page.
 */

/*
 * List definitions.
 */
#define	LIST_HEAD(name, type)						\
struct name {								\
	struct type *lh_first;	/* first element */			\
}

#define	LIST_HEAD_INITIALIZER(head)					\
	{ NULL }

#define	LIST_ENTRY(type)						\
struct {								\
	struct type *le_next;	/* next element */			\
	struct type **le_prev;	/* address of previous next element */	\
}

/*
 * List functions.
 */
#define	LIST_INIT(head) do {						\
	(head)->lh_first = NULL;					\
} while (/*CONSTCOND*/0)

#define	LIST_INSERT_AFTER(listelm, elm, field) do {			\
	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
		(listelm)->field.le_next->field.le_prev =		\
		    &(elm)->field.le_next;				\
	(listelm)->field.le_next = (elm);				\
	(elm)->field.le_prev = &(listelm)->field.le_next;		\
} while (/*CONSTCOND*/0)

#define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
	(elm)->field.le_prev = (listelm)->field.le_prev;		\
	(elm)->field.le_next = (listelm);				\
	*(listelm)->field.le_prev = (elm);				\
	(listelm)->field.le_prev = &(elm)->field.le_next;		\
} while (/*CONSTCOND*/0)

#define	LIST_INSERT_HEAD(head, elm, field) do {				\
	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
	(head)->lh_first = (elm);					\
	(elm)->field.le_prev = &(head)->lh_first;			\
} while (/*CONSTCOND*/0)

#define	LIST_REMOVE(elm, field) do {					\
	if ((elm)->field.le_next != NULL)				\
		(elm)->field.le_next->field.le_prev = 			\
		    (elm)->field.le_prev;				\
	*(elm)->field.le_prev = (elm)->field.le_next;			\
} while (/*CONSTCOND*/0)

#define	LIST_FOREACH(var, head, field)					\
	for ((var) = ((head)->lh_first);				\
		(var);							\
		(var) = ((var)->field.le_next))

/*
 * List access methods.
 */
#define	LIST_EMPTY(head)		((head)->lh_first == NULL)
#define	LIST_FIRST(head)		((head)->lh_first)
#define	LIST_NEXT(elm, field)		((elm)->field.le_next)


/*
 * Singly-linked List definitions.
 */
#define	SLIST_HEAD(name, type)						\
struct name {								\
	struct type *slh_first;	/* first element */			\
}

#define	SLIST_HEAD_INITIALIZER(head)					\
	{ NULL }

#define	SLIST_ENTRY(type)						\
struct {								\
	struct type *sle_next;	/* next element */			\
}

/*
 * Singly-linked List functions.
 */
#define	SLIST_INIT(head) do {						\
	(head)->slh_first = NULL;					\
} while (/*CONSTCOND*/0)

#define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
	(slistelm)->field.sle_next = (elm);				\
} while (/*CONSTCOND*/0)

#define	SLIST_INSERT_HEAD(head, elm, field) do {			\
	(elm)->field.sle_next = (head)->slh_first;			\
	(head)->slh_first = (elm);					\
} while (/*CONSTCOND*/0)

#define	SLIST_REMOVE_HEAD(head, field) do {				\
	(head)->slh_first = (head)->slh_first->field.sle_next;		\
} while (/*CONSTCOND*/0)

#define	SLIST_REMOVE(head, elm, type, field) do {			\
	if ((head)->slh_first == (elm)) {				\
		SLIST_REMOVE_HEAD((head), field);			\
	}								\
	else {								\
		struct type *curelm = (head)->slh_first;		\
		while(curelm->field.sle_next != (elm))			\
			curelm = curelm->field.sle_next;		\
		curelm->field.sle_next =				\
		    curelm->field.sle_next->field.sle_next;		\
	}								\
} while (/*CONSTCOND*/0)

#define	SLIST_FOREACH(var, head, field)					\
	for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)

/*
 * Singly-linked List access methods.
 */
#define	SLIST_EMPTY(head)	((head)->slh_first == NULL)
#define	SLIST_FIRST(head)	((head)->slh_first)
#define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)


/*
 * Singly-linked Tail queue declarations.
 */
#define	STAILQ_HEAD(name, type)					\
struct name {								\
	struct type *stqh_first;	/* first element */			\
	struct type **stqh_last;	/* addr of last next element */		\
}

#define	STAILQ_HEAD_INITIALIZER(head)					\
	{ NULL, &(head).stqh_first }

#define	STAILQ_ENTRY(type)						\
struct {								\
	struct type *stqe_next;	/* next element */			\
}

/*
 * Singly-linked Tail queue functions.
 */
#define	STAILQ_INIT(head) do {						\
	(head)->stqh_first = NULL;					\
	(head)->stqh_last = &(head)->stqh_first;				\
} while (/*CONSTCOND*/0)

#define	STAILQ_INSERT_HEAD(head, elm, field) do {			\
	if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)	\
		(head)->stqh_last = &(elm)->field.stqe_next;		\
	(head)->stqh_first = (elm);					\
} while (/*CONSTCOND*/0)

#define	STAILQ_INSERT_TAIL(head, elm, field) do {			\
	(elm)->field.stqe_next = NULL;					\
	*(head)->stqh_last = (elm);					\
	(head)->stqh_last = &(elm)->field.stqe_next;			\
} while (/*CONSTCOND*/0)

#define	STAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
	if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
		(head)->stqh_last = &(elm)->field.stqe_next;		\
	(listelm)->field.stqe_next = (elm);				\
} while (/*CONSTCOND*/0)

#define	STAILQ_REMOVE_HEAD(head, field) do {				\
	if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
		(head)->stqh_last = &(head)->stqh_first;			\
} while (/*CONSTCOND*/0)

#define	STAILQ_REMOVE(head, elm, type, field) do {			\
	if ((head)->stqh_first == (elm)) {				\
		STAILQ_REMOVE_HEAD((head), field);			\
	} else {							\
		struct type *curelm = (head)->stqh_first;		\
		while (curelm->field.stqe_next != (elm))			\
			curelm = curelm->field.stqe_next;		\
		if ((curelm->field.stqe_next =				\
			curelm->field.stqe_next->field.stqe_next) == NULL) \
			    (head)->stqh_last = &(curelm)->field.stqe_next; \
	}								\
} while (/*CONSTCOND*/0)

#define	STAILQ_FOREACH(var, head, field)				\
	for ((var) = ((head)->stqh_first);				\
		(var);							\
		(var) = ((var)->field.stqe_next))

#define	STAILQ_CONCAT(head1, head2) do {				\
	if (!STAILQ_EMPTY((head2))) {					\
		*(head1)->stqh_last = (head2)->stqh_first;		\
		(head1)->stqh_last = (head2)->stqh_last;		\
		STAILQ_INIT((head2));					\
	}								\
} while (/*CONSTCOND*/0)

/*
 * Singly-linked Tail queue access methods.
 */
#define	STAILQ_EMPTY(head)	((head)->stqh_first == NULL)
#define	STAILQ_FIRST(head)	((head)->stqh_first)
#define	STAILQ_NEXT(elm, field)	((elm)->field.stqe_next)


/*
 * Simple queue definitions.
 */
#define	SIMPLEQ_HEAD(name, type)					\
struct name {								\
	struct type *sqh_first;	/* first element */			\
	struct type **sqh_last;	/* addr of last next element */		\
}

#define	SIMPLEQ_HEAD_INITIALIZER(head)					\
	{ NULL, &(head).sqh_first }

#define	SIMPLEQ_ENTRY(type)						\
struct {								\
	struct type *sqe_next;	/* next element */			\
}

/*
 * Simple queue functions.
 */
#define	SIMPLEQ_INIT(head) do {						\
	(head)->sqh_first = NULL;					\
	(head)->sqh_last = &(head)->sqh_first;				\
} while (/*CONSTCOND*/0)

#define	SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
		(head)->sqh_last = &(elm)->field.sqe_next;		\
	(head)->sqh_first = (elm);					\
} while (/*CONSTCOND*/0)

#define	SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
	(elm)->field.sqe_next = NULL;					\
	*(head)->sqh_last = (elm);					\
	(head)->sqh_last = &(elm)->field.sqe_next;			\
} while (/*CONSTCOND*/0)

#define	SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
		(head)->sqh_last = &(elm)->field.sqe_next;		\
	(listelm)->field.sqe_next = (elm);				\
} while (/*CONSTCOND*/0)

#define	SIMPLEQ_REMOVE_HEAD(head, field) do {				\
	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
		(head)->sqh_last = &(head)->sqh_first;			\
} while (/*CONSTCOND*/0)

#define	SIMPLEQ_REMOVE(head, elm, type, field) do {			\
	if ((head)->sqh_first == (elm)) {				\
		SIMPLEQ_REMOVE_HEAD((head), field);			\
	} else {							\
		struct type *curelm = (head)->sqh_first;		\
		while (curelm->field.sqe_next != (elm))			\
			curelm = curelm->field.sqe_next;		\
		if ((curelm->field.sqe_next =				\
			curelm->field.sqe_next->field.sqe_next) == NULL) \
			    (head)->sqh_last = &(curelm)->field.sqe_next; \
	}								\
} while (/*CONSTCOND*/0)

#define	SIMPLEQ_FOREACH(var, head, field)				\
	for ((var) = ((head)->sqh_first);				\
		(var);							\
		(var) = ((var)->field.sqe_next))

/*
 * Simple queue access methods.
 */
#define	SIMPLEQ_EMPTY(head)		((head)->sqh_first == NULL)
#define	SIMPLEQ_FIRST(head)		((head)->sqh_first)
#define	SIMPLEQ_NEXT(elm, field)	((elm)->field.sqe_next)


/*
 * Tail queue definitions.
 */
#define	_TAILQ_HEAD(name, type, qual)					\
struct name {								\
	qual type *tqh_first;		/* first element */		\
	qual type *qual *tqh_last;	/* addr of last next element */	\
}
#define TAILQ_HEAD(name, type)	_TAILQ_HEAD(name, struct type,)

#define	TAILQ_HEAD_INITIALIZER(head)					\
	{ NULL, &(head).tqh_first }

#define	_TAILQ_ENTRY(type, qual)					\
struct {								\
	qual type *tqe_next;		/* next element */		\
	qual type *qual *tqe_prev;	/* address of previous next element */\
}
#define TAILQ_ENTRY(type)	_TAILQ_ENTRY(struct type,)

/*
 * Tail queue functions.
 */
#define	TAILQ_INIT(head) do {						\
	(head)->tqh_first = NULL;					\
	(head)->tqh_last = &(head)->tqh_first;				\
} while (/*CONSTCOND*/0)

#define	TAILQ_INSERT_HEAD(head, elm, field) do {			\
	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
		(head)->tqh_first->field.tqe_prev =			\
		    &(elm)->field.tqe_next;				\
	else								\
		(head)->tqh_last = &(elm)->field.tqe_next;		\
	(head)->tqh_first = (elm);					\
	(elm)->field.tqe_prev = &(head)->tqh_first;			\
} while (/*CONSTCOND*/0)

#define	TAILQ_INSERT_TAIL(head, elm, field) do {			\
	(elm)->field.tqe_next = NULL;					\
	(elm)->field.tqe_prev = (head)->tqh_last;			\
	*(head)->tqh_last = (elm);					\
	(head)->tqh_last = &(elm)->field.tqe_next;			\
} while (/*CONSTCOND*/0)

#define	TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
		(elm)->field.tqe_next->field.tqe_prev = 		\
		    &(elm)->field.tqe_next;				\
	else								\
		(head)->tqh_last = &(elm)->field.tqe_next;		\
	(listelm)->field.tqe_next = (elm);				\
	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
} while (/*CONSTCOND*/0)

#define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
	(elm)->field.tqe_next = (listelm);				\
	*(listelm)->field.tqe_prev = (elm);				\
	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
} while (/*CONSTCOND*/0)

#define	TAILQ_REMOVE(head, elm, field) do {				\
	if (((elm)->field.tqe_next) != NULL)				\
		(elm)->field.tqe_next->field.tqe_prev = 		\
		    (elm)->field.tqe_prev;				\
	else								\
		(head)->tqh_last = (elm)->field.tqe_prev;		\
	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
} while (/*CONSTCOND*/0)

#define	TAILQ_FOREACH(var, head, field)					\
	for ((var) = ((head)->tqh_first);				\
		(var);							\
		(var) = ((var)->field.tqe_next))

#define	TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
	for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));	\
		(var);							\
		(var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))

#define	TAILQ_CONCAT(head1, head2, field) do {				\
	if (!TAILQ_EMPTY(head2)) {					\
		*(head1)->tqh_last = (head2)->tqh_first;		\
		(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;	\
		(head1)->tqh_last = (head2)->tqh_last;			\
		TAILQ_INIT((head2));					\
	}								\
} while (/*CONSTCOND*/0)

/*
 * Tail queue access methods.
 */
#define	TAILQ_EMPTY(head)		((head)->tqh_first == NULL)
#define	TAILQ_FIRST(head)		((head)->tqh_first)
#define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)

#define	TAILQ_LAST(head, headname) \
	(*(((struct headname *)((head)->tqh_last))->tqh_last))
#define	TAILQ_PREV(elm, headname, field) \
	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))


/*
 * Circular queue definitions.
 */
#define	CIRCLEQ_HEAD(name, type)					\
struct name {								\
	struct type *cqh_first;		/* first element */		\
	struct type *cqh_last;		/* last element */		\
}

#define	CIRCLEQ_HEAD_INITIALIZER(head)					\
	{ (void *)&head, (void *)&head }

#define	CIRCLEQ_ENTRY(type)						\
struct {								\
	struct type *cqe_next;		/* next element */		\
	struct type *cqe_prev;		/* previous element */		\
}

/*
 * Circular queue functions.
 */
#define	CIRCLEQ_INIT(head) do {						\
	(head)->cqh_first = (void *)(head);				\
	(head)->cqh_last = (void *)(head);				\
} while (/*CONSTCOND*/0)

#define	CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
	(elm)->field.cqe_prev = (listelm);				\
	if ((listelm)->field.cqe_next == (void *)(head))		\
		(head)->cqh_last = (elm);				\
	else								\
		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
	(listelm)->field.cqe_next = (elm);				\
} while (/*CONSTCOND*/0)

#define	CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
	(elm)->field.cqe_next = (listelm);				\
	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
	if ((listelm)->field.cqe_prev == (void *)(head))		\
		(head)->cqh_first = (elm);				\
	else								\
		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
	(listelm)->field.cqe_prev = (elm);				\
} while (/*CONSTCOND*/0)

#define	CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
	(elm)->field.cqe_next = (head)->cqh_first;			\
	(elm)->field.cqe_prev = (void *)(head);				\
	if ((head)->cqh_last == (void *)(head))				\
		(head)->cqh_last = (elm);				\
	else								\
		(head)->cqh_first->field.cqe_prev = (elm);		\
	(head)->cqh_first = (elm);					\
} while (/*CONSTCOND*/0)

#define	CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
	(elm)->field.cqe_next = (void *)(head);				\
	(elm)->field.cqe_prev = (head)->cqh_last;			\
	if ((head)->cqh_first == (void *)(head))			\
		(head)->cqh_first = (elm);				\
	else								\
		(head)->cqh_last->field.cqe_next = (elm);		\
	(head)->cqh_last = (elm);					\
} while (/*CONSTCOND*/0)

#define	CIRCLEQ_REMOVE(head, elm, field) do {				\
	if ((elm)->field.cqe_next == (void *)(head))			\
		(head)->cqh_last = (elm)->field.cqe_prev;		\
	else								\
		(elm)->field.cqe_next->field.cqe_prev =			\
		    (elm)->field.cqe_prev;				\
	if ((elm)->field.cqe_prev == (void *)(head))			\
		(head)->cqh_first = (elm)->field.cqe_next;		\
	else								\
		(elm)->field.cqe_prev->field.cqe_next =			\
		    (elm)->field.cqe_next;				\
} while (/*CONSTCOND*/0)

#define	CIRCLEQ_FOREACH(var, head, field)				\
	for ((var) = ((head)->cqh_first);				\
		(var) != (const void *)(head);				\
		(var) = ((var)->field.cqe_next))

#define	CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
	for ((var) = ((head)->cqh_last);				\
		(var) != (const void *)(head);				\
		(var) = ((var)->field.cqe_prev))

/*
 * Circular queue access methods.
 */
#define	CIRCLEQ_EMPTY(head)		((head)->cqh_first == (void *)(head))
#define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
#define	CIRCLEQ_LAST(head)		((head)->cqh_last)
#define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
#define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)

#define CIRCLEQ_LOOP_NEXT(head, elm, field)				\
	(((elm)->field.cqe_next == (void *)(head))			\
	    ? ((head)->cqh_first)					\
	    : (elm->field.cqe_next))
#define CIRCLEQ_LOOP_PREV(head, elm, field)				\
	(((elm)->field.cqe_prev == (void *)(head))			\
	    ? ((head)->cqh_last)					\
	    : (elm->field.cqe_prev))

#endif	/* sys/queue.h */

Youez - 2016 - github.com/yon3zu
LinuXploit