Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.147.6.122
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/alt/ruby26/lib64/ruby/2.6.0/matrix/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/alt/ruby26/lib64/ruby/2.6.0/matrix/lup_decomposition.rb
# frozen_string_literal: false
class Matrix
  # Adapted from JAMA: http://math.nist.gov/javanumerics/jama/

  #
  # For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
  # unit lower triangular matrix L, an n-by-n upper triangular matrix U,
  # and a m-by-m permutation matrix P so that L*U = P*A.
  # If m < n, then L is m-by-m and U is m-by-n.
  #
  # The LUP decomposition with pivoting always exists, even if the matrix is
  # singular, so the constructor will never fail.  The primary use of the
  # LU decomposition is in the solution of square systems of simultaneous
  # linear equations.  This will fail if singular? returns true.
  #

  class LUPDecomposition
    # Returns the lower triangular factor +L+

    include Matrix::ConversionHelper

    def l
      Matrix.build(@row_count, [@column_count, @row_count].min) do |i, j|
        if (i > j)
          @lu[i][j]
        elsif (i == j)
          1
        else
          0
        end
      end
    end

    # Returns the upper triangular factor +U+

    def u
      Matrix.build([@column_count, @row_count].min, @column_count) do |i, j|
        if (i <= j)
          @lu[i][j]
        else
          0
        end
      end
    end

    # Returns the permutation matrix +P+

    def p
      rows = Array.new(@row_count){Array.new(@row_count, 0)}
      @pivots.each_with_index{|p, i| rows[i][p] = 1}
      Matrix.send :new, rows, @row_count
    end

    # Returns +L+, +U+, +P+ in an array

    def to_ary
      [l, u, p]
    end
    alias_method :to_a, :to_ary

    # Returns the pivoting indices

    attr_reader :pivots

    # Returns +true+ if +U+, and hence +A+, is singular.

    def singular?
      @column_count.times do |j|
        if (@lu[j][j] == 0)
          return true
        end
      end
      false
    end

    # Returns the determinant of +A+, calculated efficiently
    # from the factorization.

    def det
      if (@row_count != @column_count)
        Matrix.Raise Matrix::ErrDimensionMismatch
      end
      d = @pivot_sign
      @column_count.times do |j|
        d *= @lu[j][j]
      end
      d
    end
    alias_method :determinant, :det

    # Returns +m+ so that <tt>A*m = b</tt>,
    # or equivalently so that <tt>L*U*m = P*b</tt>
    # +b+ can be a Matrix or a Vector

    def solve b
      if (singular?)
        Matrix.Raise Matrix::ErrNotRegular, "Matrix is singular."
      end
      if b.is_a? Matrix
        if (b.row_count != @row_count)
          Matrix.Raise Matrix::ErrDimensionMismatch
        end

        # Copy right hand side with pivoting
        nx = b.column_count
        m = @pivots.map{|row| b.row(row).to_a}

        # Solve L*Y = P*b
        @column_count.times do |k|
          (k+1).upto(@column_count-1) do |i|
            nx.times do |j|
              m[i][j] -= m[k][j]*@lu[i][k]
            end
          end
        end
        # Solve U*m = Y
        (@column_count-1).downto(0) do |k|
          nx.times do |j|
            m[k][j] = m[k][j].quo(@lu[k][k])
          end
          k.times do |i|
            nx.times do |j|
              m[i][j] -= m[k][j]*@lu[i][k]
            end
          end
        end
        Matrix.send :new, m, nx
      else # same algorithm, specialized for simpler case of a vector
        b = convert_to_array(b)
        if (b.size != @row_count)
          Matrix.Raise Matrix::ErrDimensionMismatch
        end

        # Copy right hand side with pivoting
        m = b.values_at(*@pivots)

        # Solve L*Y = P*b
        @column_count.times do |k|
          (k+1).upto(@column_count-1) do |i|
            m[i] -= m[k]*@lu[i][k]
          end
        end
        # Solve U*m = Y
        (@column_count-1).downto(0) do |k|
          m[k] = m[k].quo(@lu[k][k])
          k.times do |i|
            m[i] -= m[k]*@lu[i][k]
          end
        end
        Vector.elements(m, false)
      end
    end

    def initialize a
      raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix)
      # Use a "left-looking", dot-product, Crout/Doolittle algorithm.
      @lu = a.to_a
      @row_count = a.row_count
      @column_count = a.column_count
      @pivots = Array.new(@row_count)
      @row_count.times do |i|
         @pivots[i] = i
      end
      @pivot_sign = 1
      lu_col_j = Array.new(@row_count)

      # Outer loop.

      @column_count.times do |j|

        # Make a copy of the j-th column to localize references.

        @row_count.times do |i|
          lu_col_j[i] = @lu[i][j]
        end

        # Apply previous transformations.

        @row_count.times do |i|
          lu_row_i = @lu[i]

          # Most of the time is spent in the following dot product.

          kmax = [i, j].min
          s = 0
          kmax.times do |k|
            s += lu_row_i[k]*lu_col_j[k]
          end

          lu_row_i[j] = lu_col_j[i] -= s
        end

        # Find pivot and exchange if necessary.

        p = j
        (j+1).upto(@row_count-1) do |i|
          if (lu_col_j[i].abs > lu_col_j[p].abs)
            p = i
          end
        end
        if (p != j)
          @column_count.times do |k|
            t = @lu[p][k]; @lu[p][k] = @lu[j][k]; @lu[j][k] = t
          end
          k = @pivots[p]; @pivots[p] = @pivots[j]; @pivots[j] = k
          @pivot_sign = -@pivot_sign
        end

        # Compute multipliers.

        if (j < @row_count && @lu[j][j] != 0)
          (j+1).upto(@row_count-1) do |i|
            @lu[i][j] = @lu[i][j].quo(@lu[j][j])
          end
        end
      end
    end
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit