Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.129.210.35
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /proc/self/root/opt/alt/python311/lib64/python3.11/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /proc/self/root/opt/alt/python311/lib64/python3.11//contextlib.py
"""Utilities for with-statement contexts.  See PEP 343."""
import abc
import os
import sys
import _collections_abc
from collections import deque
from functools import wraps
from types import MethodType, GenericAlias

__all__ = ["asynccontextmanager", "contextmanager", "closing", "nullcontext",
           "AbstractContextManager", "AbstractAsyncContextManager",
           "AsyncExitStack", "ContextDecorator", "ExitStack",
           "redirect_stdout", "redirect_stderr", "suppress", "aclosing",
           "chdir"]


class AbstractContextManager(abc.ABC):

    """An abstract base class for context managers."""

    __class_getitem__ = classmethod(GenericAlias)

    def __enter__(self):
        """Return `self` upon entering the runtime context."""
        return self

    @abc.abstractmethod
    def __exit__(self, exc_type, exc_value, traceback):
        """Raise any exception triggered within the runtime context."""
        return None

    @classmethod
    def __subclasshook__(cls, C):
        if cls is AbstractContextManager:
            return _collections_abc._check_methods(C, "__enter__", "__exit__")
        return NotImplemented


class AbstractAsyncContextManager(abc.ABC):

    """An abstract base class for asynchronous context managers."""

    __class_getitem__ = classmethod(GenericAlias)

    async def __aenter__(self):
        """Return `self` upon entering the runtime context."""
        return self

    @abc.abstractmethod
    async def __aexit__(self, exc_type, exc_value, traceback):
        """Raise any exception triggered within the runtime context."""
        return None

    @classmethod
    def __subclasshook__(cls, C):
        if cls is AbstractAsyncContextManager:
            return _collections_abc._check_methods(C, "__aenter__",
                                                   "__aexit__")
        return NotImplemented


class ContextDecorator(object):
    "A base class or mixin that enables context managers to work as decorators."

    def _recreate_cm(self):
        """Return a recreated instance of self.

        Allows an otherwise one-shot context manager like
        _GeneratorContextManager to support use as
        a decorator via implicit recreation.

        This is a private interface just for _GeneratorContextManager.
        See issue #11647 for details.
        """
        return self

    def __call__(self, func):
        @wraps(func)
        def inner(*args, **kwds):
            with self._recreate_cm():
                return func(*args, **kwds)
        return inner


class AsyncContextDecorator(object):
    "A base class or mixin that enables async context managers to work as decorators."

    def _recreate_cm(self):
        """Return a recreated instance of self.
        """
        return self

    def __call__(self, func):
        @wraps(func)
        async def inner(*args, **kwds):
            async with self._recreate_cm():
                return await func(*args, **kwds)
        return inner


class _GeneratorContextManagerBase:
    """Shared functionality for @contextmanager and @asynccontextmanager."""

    def __init__(self, func, args, kwds):
        self.gen = func(*args, **kwds)
        self.func, self.args, self.kwds = func, args, kwds
        # Issue 19330: ensure context manager instances have good docstrings
        doc = getattr(func, "__doc__", None)
        if doc is None:
            doc = type(self).__doc__
        self.__doc__ = doc
        # Unfortunately, this still doesn't provide good help output when
        # inspecting the created context manager instances, since pydoc
        # currently bypasses the instance docstring and shows the docstring
        # for the class instead.
        # See http://bugs.python.org/issue19404 for more details.

    def _recreate_cm(self):
        # _GCMB instances are one-shot context managers, so the
        # CM must be recreated each time a decorated function is
        # called
        return self.__class__(self.func, self.args, self.kwds)


class _GeneratorContextManager(
    _GeneratorContextManagerBase,
    AbstractContextManager,
    ContextDecorator,
):
    """Helper for @contextmanager decorator."""

    def __enter__(self):
        # do not keep args and kwds alive unnecessarily
        # they are only needed for recreation, which is not possible anymore
        del self.args, self.kwds, self.func
        try:
            return next(self.gen)
        except StopIteration:
            raise RuntimeError("generator didn't yield") from None

    def __exit__(self, typ, value, traceback):
        if typ is None:
            try:
                next(self.gen)
            except StopIteration:
                return False
            else:
                try:
                    raise RuntimeError("generator didn't stop")
                finally:
                    self.gen.close()
        else:
            if value is None:
                # Need to force instantiation so we can reliably
                # tell if we get the same exception back
                value = typ()
            try:
                self.gen.throw(typ, value, traceback)
            except StopIteration as exc:
                # Suppress StopIteration *unless* it's the same exception that
                # was passed to throw().  This prevents a StopIteration
                # raised inside the "with" statement from being suppressed.
                return exc is not value
            except RuntimeError as exc:
                # Don't re-raise the passed in exception. (issue27122)
                if exc is value:
                    exc.__traceback__ = traceback
                    return False
                # Avoid suppressing if a StopIteration exception
                # was passed to throw() and later wrapped into a RuntimeError
                # (see PEP 479 for sync generators; async generators also
                # have this behavior). But do this only if the exception wrapped
                # by the RuntimeError is actually Stop(Async)Iteration (see
                # issue29692).
                if (
                    isinstance(value, StopIteration)
                    and exc.__cause__ is value
                ):
                    value.__traceback__ = traceback
                    return False
                raise
            except BaseException as exc:
                # only re-raise if it's *not* the exception that was
                # passed to throw(), because __exit__() must not raise
                # an exception unless __exit__() itself failed.  But throw()
                # has to raise the exception to signal propagation, so this
                # fixes the impedance mismatch between the throw() protocol
                # and the __exit__() protocol.
                if exc is not value:
                    raise
                exc.__traceback__ = traceback
                return False
            try:
                raise RuntimeError("generator didn't stop after throw()")
            finally:
                self.gen.close()

class _AsyncGeneratorContextManager(
    _GeneratorContextManagerBase,
    AbstractAsyncContextManager,
    AsyncContextDecorator,
):
    """Helper for @asynccontextmanager decorator."""

    async def __aenter__(self):
        # do not keep args and kwds alive unnecessarily
        # they are only needed for recreation, which is not possible anymore
        del self.args, self.kwds, self.func
        try:
            return await anext(self.gen)
        except StopAsyncIteration:
            raise RuntimeError("generator didn't yield") from None

    async def __aexit__(self, typ, value, traceback):
        if typ is None:
            try:
                await anext(self.gen)
            except StopAsyncIteration:
                return False
            else:
                try:
                    raise RuntimeError("generator didn't stop")
                finally:
                    await self.gen.aclose()
        else:
            if value is None:
                # Need to force instantiation so we can reliably
                # tell if we get the same exception back
                value = typ()
            try:
                await self.gen.athrow(typ, value, traceback)
            except StopAsyncIteration as exc:
                # Suppress StopIteration *unless* it's the same exception that
                # was passed to throw().  This prevents a StopIteration
                # raised inside the "with" statement from being suppressed.
                return exc is not value
            except RuntimeError as exc:
                # Don't re-raise the passed in exception. (issue27122)
                if exc is value:
                    exc.__traceback__ = traceback
                    return False
                # Avoid suppressing if a Stop(Async)Iteration exception
                # was passed to athrow() and later wrapped into a RuntimeError
                # (see PEP 479 for sync generators; async generators also
                # have this behavior). But do this only if the exception wrapped
                # by the RuntimeError is actually Stop(Async)Iteration (see
                # issue29692).
                if (
                    isinstance(value, (StopIteration, StopAsyncIteration))
                    and exc.__cause__ is value
                ):
                    value.__traceback__ = traceback
                    return False
                raise
            except BaseException as exc:
                # only re-raise if it's *not* the exception that was
                # passed to throw(), because __exit__() must not raise
                # an exception unless __exit__() itself failed.  But throw()
                # has to raise the exception to signal propagation, so this
                # fixes the impedance mismatch between the throw() protocol
                # and the __exit__() protocol.
                if exc is not value:
                    raise
                exc.__traceback__ = traceback
                return False
            try:
                raise RuntimeError("generator didn't stop after athrow()")
            finally:
                await self.gen.aclose()


def contextmanager(func):
    """@contextmanager decorator.

    Typical usage:

        @contextmanager
        def some_generator(<arguments>):
            <setup>
            try:
                yield <value>
            finally:
                <cleanup>

    This makes this:

        with some_generator(<arguments>) as <variable>:
            <body>

    equivalent to this:

        <setup>
        try:
            <variable> = <value>
            <body>
        finally:
            <cleanup>
    """
    @wraps(func)
    def helper(*args, **kwds):
        return _GeneratorContextManager(func, args, kwds)
    return helper


def asynccontextmanager(func):
    """@asynccontextmanager decorator.

    Typical usage:

        @asynccontextmanager
        async def some_async_generator(<arguments>):
            <setup>
            try:
                yield <value>
            finally:
                <cleanup>

    This makes this:

        async with some_async_generator(<arguments>) as <variable>:
            <body>

    equivalent to this:

        <setup>
        try:
            <variable> = <value>
            <body>
        finally:
            <cleanup>
    """
    @wraps(func)
    def helper(*args, **kwds):
        return _AsyncGeneratorContextManager(func, args, kwds)
    return helper


class closing(AbstractContextManager):
    """Context to automatically close something at the end of a block.

    Code like this:

        with closing(<module>.open(<arguments>)) as f:
            <block>

    is equivalent to this:

        f = <module>.open(<arguments>)
        try:
            <block>
        finally:
            f.close()

    """
    def __init__(self, thing):
        self.thing = thing
    def __enter__(self):
        return self.thing
    def __exit__(self, *exc_info):
        self.thing.close()


class aclosing(AbstractAsyncContextManager):
    """Async context manager for safely finalizing an asynchronously cleaned-up
    resource such as an async generator, calling its ``aclose()`` method.

    Code like this:

        async with aclosing(<module>.fetch(<arguments>)) as agen:
            <block>

    is equivalent to this:

        agen = <module>.fetch(<arguments>)
        try:
            <block>
        finally:
            await agen.aclose()

    """
    def __init__(self, thing):
        self.thing = thing
    async def __aenter__(self):
        return self.thing
    async def __aexit__(self, *exc_info):
        await self.thing.aclose()


class _RedirectStream(AbstractContextManager):

    _stream = None

    def __init__(self, new_target):
        self._new_target = new_target
        # We use a list of old targets to make this CM re-entrant
        self._old_targets = []

    def __enter__(self):
        self._old_targets.append(getattr(sys, self._stream))
        setattr(sys, self._stream, self._new_target)
        return self._new_target

    def __exit__(self, exctype, excinst, exctb):
        setattr(sys, self._stream, self._old_targets.pop())


class redirect_stdout(_RedirectStream):
    """Context manager for temporarily redirecting stdout to another file.

        # How to send help() to stderr
        with redirect_stdout(sys.stderr):
            help(dir)

        # How to write help() to a file
        with open('help.txt', 'w') as f:
            with redirect_stdout(f):
                help(pow)
    """

    _stream = "stdout"


class redirect_stderr(_RedirectStream):
    """Context manager for temporarily redirecting stderr to another file."""

    _stream = "stderr"


class suppress(AbstractContextManager):
    """Context manager to suppress specified exceptions

    After the exception is suppressed, execution proceeds with the next
    statement following the with statement.

         with suppress(FileNotFoundError):
             os.remove(somefile)
         # Execution still resumes here if the file was already removed
    """

    def __init__(self, *exceptions):
        self._exceptions = exceptions

    def __enter__(self):
        pass

    def __exit__(self, exctype, excinst, exctb):
        # Unlike isinstance and issubclass, CPython exception handling
        # currently only looks at the concrete type hierarchy (ignoring
        # the instance and subclass checking hooks). While Guido considers
        # that a bug rather than a feature, it's a fairly hard one to fix
        # due to various internal implementation details. suppress provides
        # the simpler issubclass based semantics, rather than trying to
        # exactly reproduce the limitations of the CPython interpreter.
        #
        # See http://bugs.python.org/issue12029 for more details
        return exctype is not None and issubclass(exctype, self._exceptions)


class _BaseExitStack:
    """A base class for ExitStack and AsyncExitStack."""

    @staticmethod
    def _create_exit_wrapper(cm, cm_exit):
        return MethodType(cm_exit, cm)

    @staticmethod
    def _create_cb_wrapper(callback, /, *args, **kwds):
        def _exit_wrapper(exc_type, exc, tb):
            callback(*args, **kwds)
        return _exit_wrapper

    def __init__(self):
        self._exit_callbacks = deque()

    def pop_all(self):
        """Preserve the context stack by transferring it to a new instance."""
        new_stack = type(self)()
        new_stack._exit_callbacks = self._exit_callbacks
        self._exit_callbacks = deque()
        return new_stack

    def push(self, exit):
        """Registers a callback with the standard __exit__ method signature.

        Can suppress exceptions the same way __exit__ method can.
        Also accepts any object with an __exit__ method (registering a call
        to the method instead of the object itself).
        """
        # We use an unbound method rather than a bound method to follow
        # the standard lookup behaviour for special methods.
        _cb_type = type(exit)

        try:
            exit_method = _cb_type.__exit__
        except AttributeError:
            # Not a context manager, so assume it's a callable.
            self._push_exit_callback(exit)
        else:
            self._push_cm_exit(exit, exit_method)
        return exit  # Allow use as a decorator.

    def enter_context(self, cm):
        """Enters the supplied context manager.

        If successful, also pushes its __exit__ method as a callback and
        returns the result of the __enter__ method.
        """
        # We look up the special methods on the type to match the with
        # statement.
        cls = type(cm)
        try:
            _enter = cls.__enter__
            _exit = cls.__exit__
        except AttributeError:
            raise TypeError(f"'{cls.__module__}.{cls.__qualname__}' object does "
                            f"not support the context manager protocol") from None
        result = _enter(cm)
        self._push_cm_exit(cm, _exit)
        return result

    def callback(self, callback, /, *args, **kwds):
        """Registers an arbitrary callback and arguments.

        Cannot suppress exceptions.
        """
        _exit_wrapper = self._create_cb_wrapper(callback, *args, **kwds)

        # We changed the signature, so using @wraps is not appropriate, but
        # setting __wrapped__ may still help with introspection.
        _exit_wrapper.__wrapped__ = callback
        self._push_exit_callback(_exit_wrapper)
        return callback  # Allow use as a decorator

    def _push_cm_exit(self, cm, cm_exit):
        """Helper to correctly register callbacks to __exit__ methods."""
        _exit_wrapper = self._create_exit_wrapper(cm, cm_exit)
        self._push_exit_callback(_exit_wrapper, True)

    def _push_exit_callback(self, callback, is_sync=True):
        self._exit_callbacks.append((is_sync, callback))


# Inspired by discussions on http://bugs.python.org/issue13585
class ExitStack(_BaseExitStack, AbstractContextManager):
    """Context manager for dynamic management of a stack of exit callbacks.

    For example:
        with ExitStack() as stack:
            files = [stack.enter_context(open(fname)) for fname in filenames]
            # All opened files will automatically be closed at the end of
            # the with statement, even if attempts to open files later
            # in the list raise an exception.
    """

    def __enter__(self):
        return self

    def __exit__(self, *exc_details):
        received_exc = exc_details[0] is not None

        # We manipulate the exception state so it behaves as though
        # we were actually nesting multiple with statements
        frame_exc = sys.exc_info()[1]
        def _fix_exception_context(new_exc, old_exc):
            # Context may not be correct, so find the end of the chain
            while 1:
                exc_context = new_exc.__context__
                if exc_context is None or exc_context is old_exc:
                    # Context is already set correctly (see issue 20317)
                    return
                if exc_context is frame_exc:
                    break
                new_exc = exc_context
            # Change the end of the chain to point to the exception
            # we expect it to reference
            new_exc.__context__ = old_exc

        # Callbacks are invoked in LIFO order to match the behaviour of
        # nested context managers
        suppressed_exc = False
        pending_raise = False
        while self._exit_callbacks:
            is_sync, cb = self._exit_callbacks.pop()
            assert is_sync
            try:
                if cb(*exc_details):
                    suppressed_exc = True
                    pending_raise = False
                    exc_details = (None, None, None)
            except:
                new_exc_details = sys.exc_info()
                # simulate the stack of exceptions by setting the context
                _fix_exception_context(new_exc_details[1], exc_details[1])
                pending_raise = True
                exc_details = new_exc_details
        if pending_raise:
            try:
                # bare "raise exc_details[1]" replaces our carefully
                # set-up context
                fixed_ctx = exc_details[1].__context__
                raise exc_details[1]
            except BaseException:
                exc_details[1].__context__ = fixed_ctx
                raise
        return received_exc and suppressed_exc

    def close(self):
        """Immediately unwind the context stack."""
        self.__exit__(None, None, None)


# Inspired by discussions on https://bugs.python.org/issue29302
class AsyncExitStack(_BaseExitStack, AbstractAsyncContextManager):
    """Async context manager for dynamic management of a stack of exit
    callbacks.

    For example:
        async with AsyncExitStack() as stack:
            connections = [await stack.enter_async_context(get_connection())
                for i in range(5)]
            # All opened connections will automatically be released at the
            # end of the async with statement, even if attempts to open a
            # connection later in the list raise an exception.
    """

    @staticmethod
    def _create_async_exit_wrapper(cm, cm_exit):
        return MethodType(cm_exit, cm)

    @staticmethod
    def _create_async_cb_wrapper(callback, /, *args, **kwds):
        async def _exit_wrapper(exc_type, exc, tb):
            await callback(*args, **kwds)
        return _exit_wrapper

    async def enter_async_context(self, cm):
        """Enters the supplied async context manager.

        If successful, also pushes its __aexit__ method as a callback and
        returns the result of the __aenter__ method.
        """
        cls = type(cm)
        try:
            _enter = cls.__aenter__
            _exit = cls.__aexit__
        except AttributeError:
            raise TypeError(f"'{cls.__module__}.{cls.__qualname__}' object does "
                            f"not support the asynchronous context manager protocol"
                           ) from None
        result = await _enter(cm)
        self._push_async_cm_exit(cm, _exit)
        return result

    def push_async_exit(self, exit):
        """Registers a coroutine function with the standard __aexit__ method
        signature.

        Can suppress exceptions the same way __aexit__ method can.
        Also accepts any object with an __aexit__ method (registering a call
        to the method instead of the object itself).
        """
        _cb_type = type(exit)
        try:
            exit_method = _cb_type.__aexit__
        except AttributeError:
            # Not an async context manager, so assume it's a coroutine function
            self._push_exit_callback(exit, False)
        else:
            self._push_async_cm_exit(exit, exit_method)
        return exit  # Allow use as a decorator

    def push_async_callback(self, callback, /, *args, **kwds):
        """Registers an arbitrary coroutine function and arguments.

        Cannot suppress exceptions.
        """
        _exit_wrapper = self._create_async_cb_wrapper(callback, *args, **kwds)

        # We changed the signature, so using @wraps is not appropriate, but
        # setting __wrapped__ may still help with introspection.
        _exit_wrapper.__wrapped__ = callback
        self._push_exit_callback(_exit_wrapper, False)
        return callback  # Allow use as a decorator

    async def aclose(self):
        """Immediately unwind the context stack."""
        await self.__aexit__(None, None, None)

    def _push_async_cm_exit(self, cm, cm_exit):
        """Helper to correctly register coroutine function to __aexit__
        method."""
        _exit_wrapper = self._create_async_exit_wrapper(cm, cm_exit)
        self._push_exit_callback(_exit_wrapper, False)

    async def __aenter__(self):
        return self

    async def __aexit__(self, *exc_details):
        received_exc = exc_details[0] is not None

        # We manipulate the exception state so it behaves as though
        # we were actually nesting multiple with statements
        frame_exc = sys.exc_info()[1]
        def _fix_exception_context(new_exc, old_exc):
            # Context may not be correct, so find the end of the chain
            while 1:
                exc_context = new_exc.__context__
                if exc_context is None or exc_context is old_exc:
                    # Context is already set correctly (see issue 20317)
                    return
                if exc_context is frame_exc:
                    break
                new_exc = exc_context
            # Change the end of the chain to point to the exception
            # we expect it to reference
            new_exc.__context__ = old_exc

        # Callbacks are invoked in LIFO order to match the behaviour of
        # nested context managers
        suppressed_exc = False
        pending_raise = False
        while self._exit_callbacks:
            is_sync, cb = self._exit_callbacks.pop()
            try:
                if is_sync:
                    cb_suppress = cb(*exc_details)
                else:
                    cb_suppress = await cb(*exc_details)

                if cb_suppress:
                    suppressed_exc = True
                    pending_raise = False
                    exc_details = (None, None, None)
            except:
                new_exc_details = sys.exc_info()
                # simulate the stack of exceptions by setting the context
                _fix_exception_context(new_exc_details[1], exc_details[1])
                pending_raise = True
                exc_details = new_exc_details
        if pending_raise:
            try:
                # bare "raise exc_details[1]" replaces our carefully
                # set-up context
                fixed_ctx = exc_details[1].__context__
                raise exc_details[1]
            except BaseException:
                exc_details[1].__context__ = fixed_ctx
                raise
        return received_exc and suppressed_exc


class nullcontext(AbstractContextManager, AbstractAsyncContextManager):
    """Context manager that does no additional processing.

    Used as a stand-in for a normal context manager, when a particular
    block of code is only sometimes used with a normal context manager:

    cm = optional_cm if condition else nullcontext()
    with cm:
        # Perform operation, using optional_cm if condition is True
    """

    def __init__(self, enter_result=None):
        self.enter_result = enter_result

    def __enter__(self):
        return self.enter_result

    def __exit__(self, *excinfo):
        pass

    async def __aenter__(self):
        return self.enter_result

    async def __aexit__(self, *excinfo):
        pass


class chdir(AbstractContextManager):
    """Non thread-safe context manager to change the current working directory."""

    def __init__(self, path):
        self.path = path
        self._old_cwd = []

    def __enter__(self):
        self._old_cwd.append(os.getcwd())
        os.chdir(self.path)

    def __exit__(self, *excinfo):
        os.chdir(self._old_cwd.pop())

Youez - 2016 - github.com/yon3zu
LinuXploit