Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 52.14.219.203
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/alt/ruby32/share/ruby/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/alt/ruby32/share/ruby//tsort.rb
# frozen_string_literal: true

#--
# tsort.rb - provides a module for topological sorting and strongly connected components.
#++
#

#
# TSort implements topological sorting using Tarjan's algorithm for
# strongly connected components.
#
# TSort is designed to be able to be used with any object which can be
# interpreted as a directed graph.
#
# TSort requires two methods to interpret an object as a graph,
# tsort_each_node and tsort_each_child.
#
# * tsort_each_node is used to iterate for all nodes over a graph.
# * tsort_each_child is used to iterate for child nodes of a given node.
#
# The equality of nodes are defined by eql? and hash since
# TSort uses Hash internally.
#
# == A Simple Example
#
# The following example demonstrates how to mix the TSort module into an
# existing class (in this case, Hash). Here, we're treating each key in
# the hash as a node in the graph, and so we simply alias the required
# #tsort_each_node method to Hash's #each_key method. For each key in the
# hash, the associated value is an array of the node's child nodes. This
# choice in turn leads to our implementation of the required #tsort_each_child
# method, which fetches the array of child nodes and then iterates over that
# array using the user-supplied block.
#
#   require 'tsort'
#
#   class Hash
#     include TSort
#     alias tsort_each_node each_key
#     def tsort_each_child(node, &block)
#       fetch(node).each(&block)
#     end
#   end
#
#   {1=>[2, 3], 2=>[3], 3=>[], 4=>[]}.tsort
#   #=> [3, 2, 1, 4]
#
#   {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}.strongly_connected_components
#   #=> [[4], [2, 3], [1]]
#
# == A More Realistic Example
#
# A very simple `make' like tool can be implemented as follows:
#
#   require 'tsort'
#
#   class Make
#     def initialize
#       @dep = {}
#       @dep.default = []
#     end
#
#     def rule(outputs, inputs=[], &block)
#       triple = [outputs, inputs, block]
#       outputs.each {|f| @dep[f] = [triple]}
#       @dep[triple] = inputs
#     end
#
#     def build(target)
#       each_strongly_connected_component_from(target) {|ns|
#         if ns.length != 1
#           fs = ns.delete_if {|n| Array === n}
#           raise TSort::Cyclic.new("cyclic dependencies: #{fs.join ', '}")
#         end
#         n = ns.first
#         if Array === n
#           outputs, inputs, block = n
#           inputs_time = inputs.map {|f| File.mtime f}.max
#           begin
#             outputs_time = outputs.map {|f| File.mtime f}.min
#           rescue Errno::ENOENT
#             outputs_time = nil
#           end
#           if outputs_time == nil ||
#              inputs_time != nil && outputs_time <= inputs_time
#             sleep 1 if inputs_time != nil && inputs_time.to_i == Time.now.to_i
#             block.call
#           end
#         end
#       }
#     end
#
#     def tsort_each_child(node, &block)
#       @dep[node].each(&block)
#     end
#     include TSort
#   end
#
#   def command(arg)
#     print arg, "\n"
#     system arg
#   end
#
#   m = Make.new
#   m.rule(%w[t1]) { command 'date > t1' }
#   m.rule(%w[t2]) { command 'date > t2' }
#   m.rule(%w[t3]) { command 'date > t3' }
#   m.rule(%w[t4], %w[t1 t3]) { command 'cat t1 t3 > t4' }
#   m.rule(%w[t5], %w[t4 t2]) { command 'cat t4 t2 > t5' }
#   m.build('t5')
#
# == Bugs
#
# * 'tsort.rb' is wrong name because this library uses
#   Tarjan's algorithm for strongly connected components.
#   Although 'strongly_connected_components.rb' is correct but too long.
#
# == References
#
# R. E. Tarjan, "Depth First Search and Linear Graph Algorithms",
# <em>SIAM Journal on Computing</em>, Vol. 1, No. 2, pp. 146-160, June 1972.
#

module TSort
  class Cyclic < StandardError
  end

  # Returns a topologically sorted array of nodes.
  # The array is sorted from children to parents, i.e.
  # the first element has no child and the last node has no parent.
  #
  # If there is a cycle, TSort::Cyclic is raised.
  #
  #   class G
  #     include TSort
  #     def initialize(g)
  #       @g = g
  #     end
  #     def tsort_each_child(n, &b) @g[n].each(&b) end
  #     def tsort_each_node(&b) @g.each_key(&b) end
  #   end
  #
  #   graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
  #   p graph.tsort #=> [4, 2, 3, 1]
  #
  #   graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
  #   p graph.tsort # raises TSort::Cyclic
  #
  def tsort
    each_node = method(:tsort_each_node)
    each_child = method(:tsort_each_child)
    TSort.tsort(each_node, each_child)
  end

  # Returns a topologically sorted array of nodes.
  # The array is sorted from children to parents, i.e.
  # the first element has no child and the last node has no parent.
  #
  # The graph is represented by _each_node_ and _each_child_.
  # _each_node_ should have +call+ method which yields for each node in the graph.
  # _each_child_ should have +call+ method which takes a node argument and yields for each child node.
  #
  # If there is a cycle, TSort::Cyclic is raised.
  #
  #   g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   p TSort.tsort(each_node, each_child) #=> [4, 2, 3, 1]
  #
  #   g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   p TSort.tsort(each_node, each_child) # raises TSort::Cyclic
  #
  def self.tsort(each_node, each_child)
    tsort_each(each_node, each_child).to_a
  end

  # The iterator version of the #tsort method.
  # <tt><em>obj</em>.tsort_each</tt> is similar to <tt><em>obj</em>.tsort.each</tt>, but
  # modification of _obj_ during the iteration may lead to unexpected results.
  #
  # #tsort_each returns +nil+.
  # If there is a cycle, TSort::Cyclic is raised.
  #
  #   class G
  #     include TSort
  #     def initialize(g)
  #       @g = g
  #     end
  #     def tsort_each_child(n, &b) @g[n].each(&b) end
  #     def tsort_each_node(&b) @g.each_key(&b) end
  #   end
  #
  #   graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
  #   graph.tsort_each {|n| p n }
  #   #=> 4
  #   #   2
  #   #   3
  #   #   1
  #
  def tsort_each(&block) # :yields: node
    each_node = method(:tsort_each_node)
    each_child = method(:tsort_each_child)
    TSort.tsort_each(each_node, each_child, &block)
  end

  # The iterator version of the TSort.tsort method.
  #
  # The graph is represented by _each_node_ and _each_child_.
  # _each_node_ should have +call+ method which yields for each node in the graph.
  # _each_child_ should have +call+ method which takes a node argument and yields for each child node.
  #
  #   g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   TSort.tsort_each(each_node, each_child) {|n| p n }
  #   #=> 4
  #   #   2
  #   #   3
  #   #   1
  #
  def self.tsort_each(each_node, each_child) # :yields: node
    return to_enum(__method__, each_node, each_child) unless block_given?

    each_strongly_connected_component(each_node, each_child) {|component|
      if component.size == 1
        yield component.first
      else
        raise Cyclic.new("topological sort failed: #{component.inspect}")
      end
    }
  end

  # Returns strongly connected components as an array of arrays of nodes.
  # The array is sorted from children to parents.
  # Each elements of the array represents a strongly connected component.
  #
  #   class G
  #     include TSort
  #     def initialize(g)
  #       @g = g
  #     end
  #     def tsort_each_child(n, &b) @g[n].each(&b) end
  #     def tsort_each_node(&b) @g.each_key(&b) end
  #   end
  #
  #   graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
  #   p graph.strongly_connected_components #=> [[4], [2], [3], [1]]
  #
  #   graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
  #   p graph.strongly_connected_components #=> [[4], [2, 3], [1]]
  #
  def strongly_connected_components
    each_node = method(:tsort_each_node)
    each_child = method(:tsort_each_child)
    TSort.strongly_connected_components(each_node, each_child)
  end

  # Returns strongly connected components as an array of arrays of nodes.
  # The array is sorted from children to parents.
  # Each elements of the array represents a strongly connected component.
  #
  # The graph is represented by _each_node_ and _each_child_.
  # _each_node_ should have +call+ method which yields for each node in the graph.
  # _each_child_ should have +call+ method which takes a node argument and yields for each child node.
  #
  #   g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   p TSort.strongly_connected_components(each_node, each_child)
  #   #=> [[4], [2], [3], [1]]
  #
  #   g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   p TSort.strongly_connected_components(each_node, each_child)
  #   #=> [[4], [2, 3], [1]]
  #
  def self.strongly_connected_components(each_node, each_child)
    each_strongly_connected_component(each_node, each_child).to_a
  end

  # The iterator version of the #strongly_connected_components method.
  # <tt><em>obj</em>.each_strongly_connected_component</tt> is similar to
  # <tt><em>obj</em>.strongly_connected_components.each</tt>, but
  # modification of _obj_ during the iteration may lead to unexpected results.
  #
  # #each_strongly_connected_component returns +nil+.
  #
  #   class G
  #     include TSort
  #     def initialize(g)
  #       @g = g
  #     end
  #     def tsort_each_child(n, &b) @g[n].each(&b) end
  #     def tsort_each_node(&b) @g.each_key(&b) end
  #   end
  #
  #   graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
  #   graph.each_strongly_connected_component {|scc| p scc }
  #   #=> [4]
  #   #   [2]
  #   #   [3]
  #   #   [1]
  #
  #   graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
  #   graph.each_strongly_connected_component {|scc| p scc }
  #   #=> [4]
  #   #   [2, 3]
  #   #   [1]
  #
  def each_strongly_connected_component(&block) # :yields: nodes
    each_node = method(:tsort_each_node)
    each_child = method(:tsort_each_child)
    TSort.each_strongly_connected_component(each_node, each_child, &block)
  end

  # The iterator version of the TSort.strongly_connected_components method.
  #
  # The graph is represented by _each_node_ and _each_child_.
  # _each_node_ should have +call+ method which yields for each node in the graph.
  # _each_child_ should have +call+ method which takes a node argument and yields for each child node.
  #
  #   g = {1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc }
  #   #=> [4]
  #   #   [2]
  #   #   [3]
  #   #   [1]
  #
  #   g = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
  #   each_node = lambda {|&b| g.each_key(&b) }
  #   each_child = lambda {|n, &b| g[n].each(&b) }
  #   TSort.each_strongly_connected_component(each_node, each_child) {|scc| p scc }
  #   #=> [4]
  #   #   [2, 3]
  #   #   [1]
  #
  def self.each_strongly_connected_component(each_node, each_child) # :yields: nodes
    return to_enum(__method__, each_node, each_child) unless block_given?

    id_map = {}
    stack = []
    each_node.call {|node|
      unless id_map.include? node
        each_strongly_connected_component_from(node, each_child, id_map, stack) {|c|
          yield c
        }
      end
    }
    nil
  end

  # Iterates over strongly connected component in the subgraph reachable from
  # _node_.
  #
  # Return value is unspecified.
  #
  # #each_strongly_connected_component_from doesn't call #tsort_each_node.
  #
  #   class G
  #     include TSort
  #     def initialize(g)
  #       @g = g
  #     end
  #     def tsort_each_child(n, &b) @g[n].each(&b) end
  #     def tsort_each_node(&b) @g.each_key(&b) end
  #   end
  #
  #   graph = G.new({1=>[2, 3], 2=>[4], 3=>[2, 4], 4=>[]})
  #   graph.each_strongly_connected_component_from(2) {|scc| p scc }
  #   #=> [4]
  #   #   [2]
  #
  #   graph = G.new({1=>[2], 2=>[3, 4], 3=>[2], 4=>[]})
  #   graph.each_strongly_connected_component_from(2) {|scc| p scc }
  #   #=> [4]
  #   #   [2, 3]
  #
  def each_strongly_connected_component_from(node, id_map={}, stack=[], &block) # :yields: nodes
    TSort.each_strongly_connected_component_from(node, method(:tsort_each_child), id_map, stack, &block)
  end

  # Iterates over strongly connected components in a graph.
  # The graph is represented by _node_ and _each_child_.
  #
  # _node_ is the first node.
  # _each_child_ should have +call+ method which takes a node argument
  # and yields for each child node.
  #
  # Return value is unspecified.
  #
  # #TSort.each_strongly_connected_component_from is a class method and
  # it doesn't need a class to represent a graph which includes TSort.
  #
  #   graph = {1=>[2], 2=>[3, 4], 3=>[2], 4=>[]}
  #   each_child = lambda {|n, &b| graph[n].each(&b) }
  #   TSort.each_strongly_connected_component_from(1, each_child) {|scc|
  #     p scc
  #   }
  #   #=> [4]
  #   #   [2, 3]
  #   #   [1]
  #
  def self.each_strongly_connected_component_from(node, each_child, id_map={}, stack=[]) # :yields: nodes
    return to_enum(__method__, node, each_child, id_map, stack) unless block_given?

    minimum_id = node_id = id_map[node] = id_map.size
    stack_length = stack.length
    stack << node

    each_child.call(node) {|child|
      if id_map.include? child
        child_id = id_map[child]
        minimum_id = child_id if child_id && child_id < minimum_id
      else
        sub_minimum_id =
          each_strongly_connected_component_from(child, each_child, id_map, stack) {|c|
            yield c
          }
        minimum_id = sub_minimum_id if sub_minimum_id < minimum_id
      end
    }

    if node_id == minimum_id
      component = stack.slice!(stack_length .. -1)
      component.each {|n| id_map[n] = nil}
      yield component
    end

    minimum_id
  end

  # Should be implemented by a extended class.
  #
  # #tsort_each_node is used to iterate for all nodes over a graph.
  #
  def tsort_each_node # :yields: node
    raise NotImplementedError.new
  end

  # Should be implemented by a extended class.
  #
  # #tsort_each_child is used to iterate for child nodes of _node_.
  #
  def tsort_each_child(node) # :yields: child
    raise NotImplementedError.new
  end
end

Youez - 2016 - github.com/yon3zu
LinuXploit