Server IP : 66.29.132.124 / Your IP : 3.145.37.211 Web Server : LiteSpeed System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64 User : wavevlvu ( 1524) PHP Version : 7.4.33 Disable Function : NONE MySQL : OFF | cURL : ON | WGET : ON | Perl : ON | Python : ON | Sudo : OFF | Pkexec : OFF Directory : /opt/hc_python/lib/python3.8/site-packages/sentry_sdk/integrations/ |
Upload File : |
from functools import wraps from typing import TYPE_CHECKING import sentry_sdk from sentry_sdk.ai.monitoring import record_token_usage from sentry_sdk.consts import OP, SPANDATA from sentry_sdk.integrations import DidNotEnable, Integration from sentry_sdk.scope import should_send_default_pii from sentry_sdk.utils import ( capture_internal_exceptions, event_from_exception, package_version, ) try: from anthropic.resources import AsyncMessages, Messages if TYPE_CHECKING: from anthropic.types import MessageStreamEvent except ImportError: raise DidNotEnable("Anthropic not installed") if TYPE_CHECKING: from typing import Any, AsyncIterator, Iterator from sentry_sdk.tracing import Span class AnthropicIntegration(Integration): identifier = "anthropic" origin = f"auto.ai.{identifier}" def __init__(self, include_prompts=True): # type: (AnthropicIntegration, bool) -> None self.include_prompts = include_prompts @staticmethod def setup_once(): # type: () -> None version = package_version("anthropic") if version is None: raise DidNotEnable("Unparsable anthropic version.") if version < (0, 16): raise DidNotEnable("anthropic 0.16 or newer required.") Messages.create = _wrap_message_create(Messages.create) AsyncMessages.create = _wrap_message_create_async(AsyncMessages.create) def _capture_exception(exc): # type: (Any) -> None event, hint = event_from_exception( exc, client_options=sentry_sdk.get_client().options, mechanism={"type": "anthropic", "handled": False}, ) sentry_sdk.capture_event(event, hint=hint) def _calculate_token_usage(result, span): # type: (Messages, Span) -> None input_tokens = 0 output_tokens = 0 if hasattr(result, "usage"): usage = result.usage if hasattr(usage, "input_tokens") and isinstance(usage.input_tokens, int): input_tokens = usage.input_tokens if hasattr(usage, "output_tokens") and isinstance(usage.output_tokens, int): output_tokens = usage.output_tokens total_tokens = input_tokens + output_tokens record_token_usage(span, input_tokens, output_tokens, total_tokens) def _get_responses(content): # type: (list[Any]) -> list[dict[str, Any]] """ Get JSON of a Anthropic responses. """ responses = [] for item in content: if hasattr(item, "text"): responses.append( { "type": item.type, "text": item.text, } ) return responses def _collect_ai_data(event, input_tokens, output_tokens, content_blocks): # type: (MessageStreamEvent, int, int, list[str]) -> tuple[int, int, list[str]] """ Count token usage and collect content blocks from the AI streaming response. """ with capture_internal_exceptions(): if hasattr(event, "type"): if event.type == "message_start": usage = event.message.usage input_tokens += usage.input_tokens output_tokens += usage.output_tokens elif event.type == "content_block_start": pass elif event.type == "content_block_delta": if hasattr(event.delta, "text"): content_blocks.append(event.delta.text) elif event.type == "content_block_stop": pass elif event.type == "message_delta": output_tokens += event.usage.output_tokens return input_tokens, output_tokens, content_blocks def _add_ai_data_to_span( span, integration, input_tokens, output_tokens, content_blocks ): # type: (Span, AnthropicIntegration, int, int, list[str]) -> None """ Add token usage and content blocks from the AI streaming response to the span. """ with capture_internal_exceptions(): if should_send_default_pii() and integration.include_prompts: complete_message = "".join(content_blocks) span.set_data( SPANDATA.AI_RESPONSES, [{"type": "text", "text": complete_message}], ) total_tokens = input_tokens + output_tokens record_token_usage(span, input_tokens, output_tokens, total_tokens) span.set_data(SPANDATA.AI_STREAMING, True) def _sentry_patched_create_common(f, *args, **kwargs): # type: (Any, *Any, **Any) -> Any integration = kwargs.pop("integration") if integration is None: return f(*args, **kwargs) if "messages" not in kwargs: return f(*args, **kwargs) try: iter(kwargs["messages"]) except TypeError: return f(*args, **kwargs) span = sentry_sdk.start_span( op=OP.ANTHROPIC_MESSAGES_CREATE, description="Anthropic messages create", origin=AnthropicIntegration.origin, ) span.__enter__() result = yield f, args, kwargs # add data to span and finish it messages = list(kwargs["messages"]) model = kwargs.get("model") with capture_internal_exceptions(): span.set_data(SPANDATA.AI_MODEL_ID, model) span.set_data(SPANDATA.AI_STREAMING, False) if should_send_default_pii() and integration.include_prompts: span.set_data(SPANDATA.AI_INPUT_MESSAGES, messages) if hasattr(result, "content"): if should_send_default_pii() and integration.include_prompts: span.set_data(SPANDATA.AI_RESPONSES, _get_responses(result.content)) _calculate_token_usage(result, span) span.__exit__(None, None, None) # Streaming response elif hasattr(result, "_iterator"): old_iterator = result._iterator def new_iterator(): # type: () -> Iterator[MessageStreamEvent] input_tokens = 0 output_tokens = 0 content_blocks = [] # type: list[str] for event in old_iterator: input_tokens, output_tokens, content_blocks = _collect_ai_data( event, input_tokens, output_tokens, content_blocks ) if event.type != "message_stop": yield event _add_ai_data_to_span( span, integration, input_tokens, output_tokens, content_blocks ) span.__exit__(None, None, None) async def new_iterator_async(): # type: () -> AsyncIterator[MessageStreamEvent] input_tokens = 0 output_tokens = 0 content_blocks = [] # type: list[str] async for event in old_iterator: input_tokens, output_tokens, content_blocks = _collect_ai_data( event, input_tokens, output_tokens, content_blocks ) if event.type != "message_stop": yield event _add_ai_data_to_span( span, integration, input_tokens, output_tokens, content_blocks ) span.__exit__(None, None, None) if str(type(result._iterator)) == "<class 'async_generator'>": result._iterator = new_iterator_async() else: result._iterator = new_iterator() else: span.set_data("unknown_response", True) span.__exit__(None, None, None) return result def _wrap_message_create(f): # type: (Any) -> Any def _execute_sync(f, *args, **kwargs): # type: (Any, *Any, **Any) -> Any gen = _sentry_patched_create_common(f, *args, **kwargs) try: f, args, kwargs = next(gen) except StopIteration as e: return e.value try: try: result = f(*args, **kwargs) except Exception as exc: _capture_exception(exc) raise exc from None return gen.send(result) except StopIteration as e: return e.value @wraps(f) def _sentry_patched_create_sync(*args, **kwargs): # type: (*Any, **Any) -> Any integration = sentry_sdk.get_client().get_integration(AnthropicIntegration) kwargs["integration"] = integration return _execute_sync(f, *args, **kwargs) return _sentry_patched_create_sync def _wrap_message_create_async(f): # type: (Any) -> Any async def _execute_async(f, *args, **kwargs): # type: (Any, *Any, **Any) -> Any gen = _sentry_patched_create_common(f, *args, **kwargs) try: f, args, kwargs = next(gen) except StopIteration as e: return await e.value try: try: result = await f(*args, **kwargs) except Exception as exc: _capture_exception(exc) raise exc from None return gen.send(result) except StopIteration as e: return e.value @wraps(f) async def _sentry_patched_create_async(*args, **kwargs): # type: (*Any, **Any) -> Any integration = sentry_sdk.get_client().get_integration(AnthropicIntegration) kwargs["integration"] = integration return await _execute_async(f, *args, **kwargs) return _sentry_patched_create_async