Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.145.170.164
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/pydantic/_internal/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/pydantic/_internal/_fields.py
"""Private logic related to fields (the `Field()` function and `FieldInfo` class), and arguments to `Annotated`."""
from __future__ import annotations as _annotations

import dataclasses
import sys
import warnings
from copy import copy
from typing import TYPE_CHECKING, Any

from annotated_types import BaseMetadata
from pydantic_core import PydanticUndefined

from . import _typing_extra
from ._config import ConfigWrapper
from ._repr import Representation
from ._typing_extra import get_cls_type_hints_lenient, get_type_hints, is_classvar, is_finalvar

if TYPE_CHECKING:
    from ..fields import FieldInfo
    from ..main import BaseModel
    from ._dataclasses import StandardDataclass
    from ._decorators import DecoratorInfos


def get_type_hints_infer_globalns(
    obj: Any,
    localns: dict[str, Any] | None = None,
    include_extras: bool = False,
) -> dict[str, Any]:
    """Gets type hints for an object by inferring the global namespace.

    It uses the `typing.get_type_hints`, The only thing that we do here is fetching
    global namespace from `obj.__module__` if it is not `None`.

    Args:
        obj: The object to get its type hints.
        localns: The local namespaces.
        include_extras: Whether to recursively include annotation metadata.

    Returns:
        The object type hints.
    """
    module_name = getattr(obj, '__module__', None)
    globalns: dict[str, Any] | None = None
    if module_name:
        try:
            globalns = sys.modules[module_name].__dict__
        except KeyError:
            # happens occasionally, see https://github.com/pydantic/pydantic/issues/2363
            pass
    return get_type_hints(obj, globalns=globalns, localns=localns, include_extras=include_extras)


class PydanticMetadata(Representation):
    """Base class for annotation markers like `Strict`."""

    __slots__ = ()


class PydanticGeneralMetadata(PydanticMetadata, BaseMetadata):
    """Pydantic general metada like `max_digits`."""

    def __init__(self, **metadata: Any):
        self.__dict__ = metadata


def collect_model_fields(  # noqa: C901
    cls: type[BaseModel],
    bases: tuple[type[Any], ...],
    config_wrapper: ConfigWrapper,
    types_namespace: dict[str, Any] | None,
    *,
    typevars_map: dict[Any, Any] | None = None,
) -> tuple[dict[str, FieldInfo], set[str]]:
    """Collect the fields of a nascent pydantic model.

    Also collect the names of any ClassVars present in the type hints.

    The returned value is a tuple of two items: the fields dict, and the set of ClassVar names.

    Args:
        cls: BaseModel or dataclass.
        bases: Parents of the class, generally `cls.__bases__`.
        config_wrapper: The config wrapper instance.
        types_namespace: Optional extra namespace to look for types in.
        typevars_map: A dictionary mapping type variables to their concrete types.

    Returns:
        A tuple contains fields and class variables.

    Raises:
        NameError:
            - If there is a conflict between a field name and protected namespaces.
            - If there is a field other than `root` in `RootModel`.
            - If a field shadows an attribute in the parent model.
    """
    from ..fields import FieldInfo

    type_hints = get_cls_type_hints_lenient(cls, types_namespace)

    # https://docs.python.org/3/howto/annotations.html#accessing-the-annotations-dict-of-an-object-in-python-3-9-and-older
    # annotations is only used for finding fields in parent classes
    annotations = cls.__dict__.get('__annotations__', {})
    fields: dict[str, FieldInfo] = {}

    class_vars: set[str] = set()
    for ann_name, ann_type in type_hints.items():
        if ann_name == 'model_config':
            # We never want to treat `model_config` as a field
            # Note: we may need to change this logic if/when we introduce a `BareModel` class with no
            # protected namespaces (where `model_config` might be allowed as a field name)
            continue
        for protected_namespace in config_wrapper.protected_namespaces:
            if ann_name.startswith(protected_namespace):
                for b in bases:
                    if hasattr(b, ann_name):
                        from ..main import BaseModel

                        if not (issubclass(b, BaseModel) and ann_name in b.model_fields):
                            raise NameError(
                                f'Field "{ann_name}" conflicts with member {getattr(b, ann_name)}'
                                f' of protected namespace "{protected_namespace}".'
                            )
                else:
                    valid_namespaces = tuple(
                        x for x in config_wrapper.protected_namespaces if not ann_name.startswith(x)
                    )
                    warnings.warn(
                        f'Field "{ann_name}" has conflict with protected namespace "{protected_namespace}".'
                        '\n\nYou may be able to resolve this warning by setting'
                        f" `model_config['protected_namespaces'] = {valid_namespaces}`.",
                        UserWarning,
                    )
        if is_classvar(ann_type):
            class_vars.add(ann_name)
            continue
        if _is_finalvar_with_default_val(ann_type, getattr(cls, ann_name, PydanticUndefined)):
            class_vars.add(ann_name)
            continue
        if not is_valid_field_name(ann_name):
            continue
        if cls.__pydantic_root_model__ and ann_name != 'root':
            raise NameError(
                f"Unexpected field with name {ann_name!r}; only 'root' is allowed as a field of a `RootModel`"
            )

        # when building a generic model with `MyModel[int]`, the generic_origin check makes sure we don't get
        # "... shadows an attribute" errors
        generic_origin = getattr(cls, '__pydantic_generic_metadata__', {}).get('origin')
        for base in bases:
            dataclass_fields = {
                field.name for field in (dataclasses.fields(base) if dataclasses.is_dataclass(base) else ())
            }
            if hasattr(base, ann_name):
                if base is generic_origin:
                    # Don't error when "shadowing" of attributes in parametrized generics
                    continue

                if ann_name in dataclass_fields:
                    # Don't error when inheriting stdlib dataclasses whose fields are "shadowed" by defaults being set
                    # on the class instance.
                    continue
                warnings.warn(
                    f'Field name "{ann_name}" shadows an attribute in parent "{base.__qualname__}"; ',
                    UserWarning,
                )

        try:
            default = getattr(cls, ann_name, PydanticUndefined)
            if default is PydanticUndefined:
                raise AttributeError
        except AttributeError:
            if ann_name in annotations:
                field_info = FieldInfo.from_annotation(ann_type)
            else:
                # if field has no default value and is not in __annotations__ this means that it is
                # defined in a base class and we can take it from there
                model_fields_lookup: dict[str, FieldInfo] = {}
                for x in cls.__bases__[::-1]:
                    model_fields_lookup.update(getattr(x, 'model_fields', {}))
                if ann_name in model_fields_lookup:
                    # The field was present on one of the (possibly multiple) base classes
                    # copy the field to make sure typevar substitutions don't cause issues with the base classes
                    field_info = copy(model_fields_lookup[ann_name])
                else:
                    # The field was not found on any base classes; this seems to be caused by fields not getting
                    # generated thanks to models not being fully defined while initializing recursive models.
                    # Nothing stops us from just creating a new FieldInfo for this type hint, so we do this.
                    field_info = FieldInfo.from_annotation(ann_type)
        else:
            field_info = FieldInfo.from_annotated_attribute(ann_type, default)
            # attributes which are fields are removed from the class namespace:
            # 1. To match the behaviour of annotation-only fields
            # 2. To avoid false positives in the NameError check above
            try:
                delattr(cls, ann_name)
            except AttributeError:
                pass  # indicates the attribute was on a parent class

        # Use cls.__dict__['__pydantic_decorators__'] instead of cls.__pydantic_decorators__
        # to make sure the decorators have already been built for this exact class
        decorators: DecoratorInfos = cls.__dict__['__pydantic_decorators__']
        if ann_name in decorators.computed_fields:
            raise ValueError("you can't override a field with a computed field")
        fields[ann_name] = field_info

    if typevars_map:
        for field in fields.values():
            field.apply_typevars_map(typevars_map, types_namespace)

    return fields, class_vars


def _is_finalvar_with_default_val(type_: type[Any], val: Any) -> bool:
    from ..fields import FieldInfo

    if not is_finalvar(type_):
        return False
    elif val is PydanticUndefined:
        return False
    elif isinstance(val, FieldInfo) and (val.default is PydanticUndefined and val.default_factory is None):
        return False
    else:
        return True


def collect_dataclass_fields(
    cls: type[StandardDataclass], types_namespace: dict[str, Any] | None, *, typevars_map: dict[Any, Any] | None = None
) -> dict[str, FieldInfo]:
    """Collect the fields of a dataclass.

    Args:
        cls: dataclass.
        types_namespace: Optional extra namespace to look for types in.
        typevars_map: A dictionary mapping type variables to their concrete types.

    Returns:
        The dataclass fields.
    """
    from ..fields import FieldInfo

    fields: dict[str, FieldInfo] = {}
    dataclass_fields: dict[str, dataclasses.Field] = cls.__dataclass_fields__
    cls_localns = dict(vars(cls))  # this matches get_cls_type_hints_lenient, but all tests pass with `= None` instead

    for ann_name, dataclass_field in dataclass_fields.items():
        ann_type = _typing_extra.eval_type_lenient(dataclass_field.type, types_namespace, cls_localns)
        if is_classvar(ann_type):
            continue

        if not dataclass_field.init and dataclass_field.default_factory == dataclasses.MISSING:
            # TODO: We should probably do something with this so that validate_assignment behaves properly
            #   Issue: https://github.com/pydantic/pydantic/issues/5470
            continue

        if isinstance(dataclass_field.default, FieldInfo):
            if dataclass_field.default.init_var:
                # TODO: same note as above
                continue
            field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field.default)
        else:
            field_info = FieldInfo.from_annotated_attribute(ann_type, dataclass_field)
        fields[ann_name] = field_info

        if field_info.default is not PydanticUndefined and isinstance(getattr(cls, ann_name, field_info), FieldInfo):
            # We need this to fix the default when the "default" from __dataclass_fields__ is a pydantic.FieldInfo
            setattr(cls, ann_name, field_info.default)

    if typevars_map:
        for field in fields.values():
            field.apply_typevars_map(typevars_map, types_namespace)

    return fields


def is_valid_field_name(name: str) -> bool:
    return not name.startswith('_')


def is_valid_privateattr_name(name: str) -> bool:
    return name.startswith('_') and not name.startswith('__')

Youez - 2016 - github.com/yon3zu
LinuXploit