Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 18.117.105.184
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/ma/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/ma/tests/test_subclassing.py
# pylint: disable-msg=W0611, W0612, W0511,R0201
"""Tests suite for MaskedArray & subclassing.

:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: test_subclassing.py 3473 2007-10-29 15:18:13Z jarrod.millman $

"""
import numpy as np
from numpy.lib.mixins import NDArrayOperatorsMixin
from numpy.testing import assert_, assert_raises
from numpy.ma.testutils import assert_equal
from numpy.ma.core import (
    array, arange, masked, MaskedArray, masked_array, log, add, hypot,
    divide, asarray, asanyarray, nomask
    )
# from numpy.ma.core import (

def assert_startswith(a, b):
    # produces a better error message than assert_(a.startswith(b))
    assert_equal(a[:len(b)], b)

class SubArray(np.ndarray):
    # Defines a generic np.ndarray subclass, that stores some metadata
    # in the  dictionary `info`.
    def __new__(cls,arr,info={}):
        x = np.asanyarray(arr).view(cls)
        x.info = info.copy()
        return x

    def __array_finalize__(self, obj):
        super().__array_finalize__(obj)
        self.info = getattr(obj, 'info', {}).copy()
        return

    def __add__(self, other):
        result = super().__add__(other)
        result.info['added'] = result.info.get('added', 0) + 1
        return result

    def __iadd__(self, other):
        result = super().__iadd__(other)
        result.info['iadded'] = result.info.get('iadded', 0) + 1
        return result


subarray = SubArray


class SubMaskedArray(MaskedArray):
    """Pure subclass of MaskedArray, keeping some info on subclass."""
    def __new__(cls, info=None, **kwargs):
        obj = super().__new__(cls, **kwargs)
        obj._optinfo['info'] = info
        return obj


class MSubArray(SubArray, MaskedArray):

    def __new__(cls, data, info={}, mask=nomask):
        subarr = SubArray(data, info)
        _data = MaskedArray.__new__(cls, data=subarr, mask=mask)
        _data.info = subarr.info
        return _data

    @property
    def _series(self):
        _view = self.view(MaskedArray)
        _view._sharedmask = False
        return _view

msubarray = MSubArray


# Also a subclass that overrides __str__, __repr__ and __setitem__, disallowing
# setting to non-class values (and thus np.ma.core.masked_print_option)
# and overrides __array_wrap__, updating the info dict, to check that this
# doesn't get destroyed by MaskedArray._update_from.  But this one also needs
# its own iterator...
class CSAIterator:
    """
    Flat iterator object that uses its own setter/getter
    (works around ndarray.flat not propagating subclass setters/getters
    see https://github.com/numpy/numpy/issues/4564)
    roughly following MaskedIterator
    """
    def __init__(self, a):
        self._original = a
        self._dataiter = a.view(np.ndarray).flat

    def __iter__(self):
        return self

    def __getitem__(self, indx):
        out = self._dataiter.__getitem__(indx)
        if not isinstance(out, np.ndarray):
            out = out.__array__()
        out = out.view(type(self._original))
        return out

    def __setitem__(self, index, value):
        self._dataiter[index] = self._original._validate_input(value)

    def __next__(self):
        return next(self._dataiter).__array__().view(type(self._original))


class ComplicatedSubArray(SubArray):

    def __str__(self):
        return f'myprefix {self.view(SubArray)} mypostfix'

    def __repr__(self):
        # Return a repr that does not start with 'name('
        return f'<{self.__class__.__name__} {self}>'

    def _validate_input(self, value):
        if not isinstance(value, ComplicatedSubArray):
            raise ValueError("Can only set to MySubArray values")
        return value

    def __setitem__(self, item, value):
        # validation ensures direct assignment with ndarray or
        # masked_print_option will fail
        super().__setitem__(item, self._validate_input(value))

    def __getitem__(self, item):
        # ensure getter returns our own class also for scalars
        value = super().__getitem__(item)
        if not isinstance(value, np.ndarray):  # scalar
            value = value.__array__().view(ComplicatedSubArray)
        return value

    @property
    def flat(self):
        return CSAIterator(self)

    @flat.setter
    def flat(self, value):
        y = self.ravel()
        y[:] = value

    def __array_wrap__(self, obj, context=None):
        obj = super().__array_wrap__(obj, context)
        if context is not None and context[0] is np.multiply:
            obj.info['multiplied'] = obj.info.get('multiplied', 0) + 1

        return obj


class WrappedArray(NDArrayOperatorsMixin):
    """
    Wrapping a MaskedArray rather than subclassing to test that
    ufunc deferrals are commutative.
    See: https://github.com/numpy/numpy/issues/15200)
    """
    __slots__ = ('_array', 'attrs')
    __array_priority__ = 20

    def __init__(self, array, **attrs):
        self._array = array
        self.attrs = attrs

    def __repr__(self):
        return f"{self.__class__.__name__}(\n{self._array}\n{self.attrs}\n)"

    def __array__(self):
        return np.asarray(self._array)

    def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
        if method == '__call__':
            inputs = [arg._array if isinstance(arg, self.__class__) else arg
                      for arg in inputs]
            return self.__class__(ufunc(*inputs, **kwargs), **self.attrs)
        else:
            return NotImplemented


class TestSubclassing:
    # Test suite for masked subclasses of ndarray.

    def setup_method(self):
        x = np.arange(5, dtype='float')
        mx = msubarray(x, mask=[0, 1, 0, 0, 0])
        self.data = (x, mx)

    def test_data_subclassing(self):
        # Tests whether the subclass is kept.
        x = np.arange(5)
        m = [0, 0, 1, 0, 0]
        xsub = SubArray(x)
        xmsub = masked_array(xsub, mask=m)
        assert_(isinstance(xmsub, MaskedArray))
        assert_equal(xmsub._data, xsub)
        assert_(isinstance(xmsub._data, SubArray))

    def test_maskedarray_subclassing(self):
        # Tests subclassing MaskedArray
        (x, mx) = self.data
        assert_(isinstance(mx._data, subarray))

    def test_masked_unary_operations(self):
        # Tests masked_unary_operation
        (x, mx) = self.data
        with np.errstate(divide='ignore'):
            assert_(isinstance(log(mx), msubarray))
            assert_equal(log(x), np.log(x))

    def test_masked_binary_operations(self):
        # Tests masked_binary_operation
        (x, mx) = self.data
        # Result should be a msubarray
        assert_(isinstance(add(mx, mx), msubarray))
        assert_(isinstance(add(mx, x), msubarray))
        # Result should work
        assert_equal(add(mx, x), mx+x)
        assert_(isinstance(add(mx, mx)._data, subarray))
        assert_(isinstance(add.outer(mx, mx), msubarray))
        assert_(isinstance(hypot(mx, mx), msubarray))
        assert_(isinstance(hypot(mx, x), msubarray))

    def test_masked_binary_operations2(self):
        # Tests domained_masked_binary_operation
        (x, mx) = self.data
        xmx = masked_array(mx.data.__array__(), mask=mx.mask)
        assert_(isinstance(divide(mx, mx), msubarray))
        assert_(isinstance(divide(mx, x), msubarray))
        assert_equal(divide(mx, mx), divide(xmx, xmx))

    def test_attributepropagation(self):
        x = array(arange(5), mask=[0]+[1]*4)
        my = masked_array(subarray(x))
        ym = msubarray(x)
        #
        z = (my+1)
        assert_(isinstance(z, MaskedArray))
        assert_(not isinstance(z, MSubArray))
        assert_(isinstance(z._data, SubArray))
        assert_equal(z._data.info, {})
        #
        z = (ym+1)
        assert_(isinstance(z, MaskedArray))
        assert_(isinstance(z, MSubArray))
        assert_(isinstance(z._data, SubArray))
        assert_(z._data.info['added'] > 0)
        # Test that inplace methods from data get used (gh-4617)
        ym += 1
        assert_(isinstance(ym, MaskedArray))
        assert_(isinstance(ym, MSubArray))
        assert_(isinstance(ym._data, SubArray))
        assert_(ym._data.info['iadded'] > 0)
        #
        ym._set_mask([1, 0, 0, 0, 1])
        assert_equal(ym._mask, [1, 0, 0, 0, 1])
        ym._series._set_mask([0, 0, 0, 0, 1])
        assert_equal(ym._mask, [0, 0, 0, 0, 1])
        #
        xsub = subarray(x, info={'name':'x'})
        mxsub = masked_array(xsub)
        assert_(hasattr(mxsub, 'info'))
        assert_equal(mxsub.info, xsub.info)

    def test_subclasspreservation(self):
        # Checks that masked_array(...,subok=True) preserves the class.
        x = np.arange(5)
        m = [0, 0, 1, 0, 0]
        xinfo = [(i, j) for (i, j) in zip(x, m)]
        xsub = MSubArray(x, mask=m, info={'xsub':xinfo})
        #
        mxsub = masked_array(xsub, subok=False)
        assert_(not isinstance(mxsub, MSubArray))
        assert_(isinstance(mxsub, MaskedArray))
        assert_equal(mxsub._mask, m)
        #
        mxsub = asarray(xsub)
        assert_(not isinstance(mxsub, MSubArray))
        assert_(isinstance(mxsub, MaskedArray))
        assert_equal(mxsub._mask, m)
        #
        mxsub = masked_array(xsub, subok=True)
        assert_(isinstance(mxsub, MSubArray))
        assert_equal(mxsub.info, xsub.info)
        assert_equal(mxsub._mask, xsub._mask)
        #
        mxsub = asanyarray(xsub)
        assert_(isinstance(mxsub, MSubArray))
        assert_equal(mxsub.info, xsub.info)
        assert_equal(mxsub._mask, m)

    def test_subclass_items(self):
        """test that getter and setter go via baseclass"""
        x = np.arange(5)
        xcsub = ComplicatedSubArray(x)
        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
        # getter should  return a ComplicatedSubArray, even for single item
        # first check we wrote ComplicatedSubArray correctly
        assert_(isinstance(xcsub[1], ComplicatedSubArray))
        assert_(isinstance(xcsub[1,...], ComplicatedSubArray))
        assert_(isinstance(xcsub[1:4], ComplicatedSubArray))

        # now that it propagates inside the MaskedArray
        assert_(isinstance(mxcsub[1], ComplicatedSubArray))
        assert_(isinstance(mxcsub[1,...].data, ComplicatedSubArray))
        assert_(mxcsub[0] is masked)
        assert_(isinstance(mxcsub[0,...].data, ComplicatedSubArray))
        assert_(isinstance(mxcsub[1:4].data, ComplicatedSubArray))

        # also for flattened version (which goes via MaskedIterator)
        assert_(isinstance(mxcsub.flat[1].data, ComplicatedSubArray))
        assert_(mxcsub.flat[0] is masked)
        assert_(isinstance(mxcsub.flat[1:4].base, ComplicatedSubArray))

        # setter should only work with ComplicatedSubArray input
        # first check we wrote ComplicatedSubArray correctly
        assert_raises(ValueError, xcsub.__setitem__, 1, x[4])
        # now that it propagates inside the MaskedArray
        assert_raises(ValueError, mxcsub.__setitem__, 1, x[4])
        assert_raises(ValueError, mxcsub.__setitem__, slice(1, 4), x[1:4])
        mxcsub[1] = xcsub[4]
        mxcsub[1:4] = xcsub[1:4]
        # also for flattened version (which goes via MaskedIterator)
        assert_raises(ValueError, mxcsub.flat.__setitem__, 1, x[4])
        assert_raises(ValueError, mxcsub.flat.__setitem__, slice(1, 4), x[1:4])
        mxcsub.flat[1] = xcsub[4]
        mxcsub.flat[1:4] = xcsub[1:4]

    def test_subclass_nomask_items(self):
        x = np.arange(5)
        xcsub = ComplicatedSubArray(x)
        mxcsub_nomask = masked_array(xcsub)

        assert_(isinstance(mxcsub_nomask[1,...].data, ComplicatedSubArray))
        assert_(isinstance(mxcsub_nomask[0,...].data, ComplicatedSubArray))

        assert_(isinstance(mxcsub_nomask[1], ComplicatedSubArray))
        assert_(isinstance(mxcsub_nomask[0], ComplicatedSubArray))

    def test_subclass_repr(self):
        """test that repr uses the name of the subclass
        and 'array' for np.ndarray"""
        x = np.arange(5)
        mx = masked_array(x, mask=[True, False, True, False, False])
        assert_startswith(repr(mx), 'masked_array')
        xsub = SubArray(x)
        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
        assert_startswith(repr(mxsub),
            f'masked_{SubArray.__name__}(data=[--, 1, --, 3, 4]')

    def test_subclass_str(self):
        """test str with subclass that has overridden str, setitem"""
        # first without override
        x = np.arange(5)
        xsub = SubArray(x)
        mxsub = masked_array(xsub, mask=[True, False, True, False, False])
        assert_equal(str(mxsub), '[-- 1 -- 3 4]')

        xcsub = ComplicatedSubArray(x)
        assert_raises(ValueError, xcsub.__setitem__, 0,
                      np.ma.core.masked_print_option)
        mxcsub = masked_array(xcsub, mask=[True, False, True, False, False])
        assert_equal(str(mxcsub), 'myprefix [-- 1 -- 3 4] mypostfix')

    def test_pure_subclass_info_preservation(self):
        # Test that ufuncs and methods conserve extra information consistently;
        # see gh-7122.
        arr1 = SubMaskedArray('test', data=[1,2,3,4,5,6])
        arr2 = SubMaskedArray(data=[0,1,2,3,4,5])
        diff1 = np.subtract(arr1, arr2)
        assert_('info' in diff1._optinfo)
        assert_(diff1._optinfo['info'] == 'test')
        diff2 = arr1 - arr2
        assert_('info' in diff2._optinfo)
        assert_(diff2._optinfo['info'] == 'test')


class ArrayNoInheritance:
    """Quantity-like class that does not inherit from ndarray"""
    def __init__(self, data, units):
        self.magnitude = data
        self.units = units

    def __getattr__(self, attr):
        return getattr(self.magnitude, attr)


def test_array_no_inheritance():
    data_masked = np.ma.array([1, 2, 3], mask=[True, False, True])
    data_masked_units = ArrayNoInheritance(data_masked, 'meters')

    # Get the masked representation of the Quantity-like class
    new_array = np.ma.array(data_masked_units)
    assert_equal(data_masked.data, new_array.data)
    assert_equal(data_masked.mask, new_array.mask)
    # Test sharing the mask
    data_masked.mask = [True, False, False]
    assert_equal(data_masked.mask, new_array.mask)
    assert_(new_array.sharedmask)

    # Get the masked representation of the Quantity-like class
    new_array = np.ma.array(data_masked_units, copy=True)
    assert_equal(data_masked.data, new_array.data)
    assert_equal(data_masked.mask, new_array.mask)
    # Test that the mask is not shared when copy=True
    data_masked.mask = [True, False, True]
    assert_equal([True, False, False], new_array.mask)
    assert_(not new_array.sharedmask)

    # Get the masked representation of the Quantity-like class
    new_array = np.ma.array(data_masked_units, keep_mask=False)
    assert_equal(data_masked.data, new_array.data)
    # The change did not affect the original mask
    assert_equal(data_masked.mask, [True, False, True])
    # Test that the mask is False and not shared when keep_mask=False
    assert_(not new_array.mask)
    assert_(not new_array.sharedmask)


class TestClassWrapping:
    # Test suite for classes that wrap MaskedArrays

    def setup_method(self):
        m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
        wm = WrappedArray(m)
        self.data = (m, wm)

    def test_masked_unary_operations(self):
        # Tests masked_unary_operation
        (m, wm) = self.data
        with np.errstate(divide='ignore'):
            assert_(isinstance(np.log(wm), WrappedArray))

    def test_masked_binary_operations(self):
        # Tests masked_binary_operation
        (m, wm) = self.data
        # Result should be a WrappedArray
        assert_(isinstance(np.add(wm, wm), WrappedArray))
        assert_(isinstance(np.add(m, wm), WrappedArray))
        assert_(isinstance(np.add(wm, m), WrappedArray))
        # add and '+' should call the same ufunc
        assert_equal(np.add(m, wm), m + wm)
        assert_(isinstance(np.hypot(m, wm), WrappedArray))
        assert_(isinstance(np.hypot(wm, m), WrappedArray))
        # Test domained binary operations
        assert_(isinstance(np.divide(wm, m), WrappedArray))
        assert_(isinstance(np.divide(m, wm), WrappedArray))
        assert_equal(np.divide(wm, m) * m, np.divide(m, m) * wm)
        # Test broadcasting
        m2 = np.stack([m, m])
        assert_(isinstance(np.divide(wm, m2), WrappedArray))
        assert_(isinstance(np.divide(m2, wm), WrappedArray))
        assert_equal(np.divide(m2, wm), np.divide(wm, m2))

    def test_mixins_have_slots(self):
        mixin = NDArrayOperatorsMixin()
        # Should raise an error
        assert_raises(AttributeError, mixin.__setattr__, "not_a_real_attr", 1)

        m = np.ma.masked_array([1, 3, 5], mask=[False, True, False])
        wm = WrappedArray(m)
        assert_raises(AttributeError, wm.__setattr__, "not_an_attr", 2)

Youez - 2016 - github.com/yon3zu
LinuXploit