Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.139.236.144
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/tests/test_stride_tricks.py
import numpy as np
from numpy.core._rational_tests import rational
from numpy.testing import (
    assert_equal, assert_array_equal, assert_raises, assert_,
    assert_raises_regex, assert_warns,
    )
from numpy.lib.stride_tricks import (
    as_strided, broadcast_arrays, _broadcast_shape, broadcast_to,
    broadcast_shapes, sliding_window_view,
    )
import pytest


def assert_shapes_correct(input_shapes, expected_shape):
    # Broadcast a list of arrays with the given input shapes and check the
    # common output shape.

    inarrays = [np.zeros(s) for s in input_shapes]
    outarrays = broadcast_arrays(*inarrays)
    outshapes = [a.shape for a in outarrays]
    expected = [expected_shape] * len(inarrays)
    assert_equal(outshapes, expected)


def assert_incompatible_shapes_raise(input_shapes):
    # Broadcast a list of arrays with the given (incompatible) input shapes
    # and check that they raise a ValueError.

    inarrays = [np.zeros(s) for s in input_shapes]
    assert_raises(ValueError, broadcast_arrays, *inarrays)


def assert_same_as_ufunc(shape0, shape1, transposed=False, flipped=False):
    # Broadcast two shapes against each other and check that the data layout
    # is the same as if a ufunc did the broadcasting.

    x0 = np.zeros(shape0, dtype=int)
    # Note that multiply.reduce's identity element is 1.0, so when shape1==(),
    # this gives the desired n==1.
    n = int(np.multiply.reduce(shape1))
    x1 = np.arange(n).reshape(shape1)
    if transposed:
        x0 = x0.T
        x1 = x1.T
    if flipped:
        x0 = x0[::-1]
        x1 = x1[::-1]
    # Use the add ufunc to do the broadcasting. Since we're adding 0s to x1, the
    # result should be exactly the same as the broadcasted view of x1.
    y = x0 + x1
    b0, b1 = broadcast_arrays(x0, x1)
    assert_array_equal(y, b1)


def test_same():
    x = np.arange(10)
    y = np.arange(10)
    bx, by = broadcast_arrays(x, y)
    assert_array_equal(x, bx)
    assert_array_equal(y, by)

def test_broadcast_kwargs():
    # ensure that a TypeError is appropriately raised when
    # np.broadcast_arrays() is called with any keyword
    # argument other than 'subok'
    x = np.arange(10)
    y = np.arange(10)

    with assert_raises_regex(TypeError, 'got an unexpected keyword'):
        broadcast_arrays(x, y, dtype='float64')


def test_one_off():
    x = np.array([[1, 2, 3]])
    y = np.array([[1], [2], [3]])
    bx, by = broadcast_arrays(x, y)
    bx0 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
    by0 = bx0.T
    assert_array_equal(bx0, bx)
    assert_array_equal(by0, by)


def test_same_input_shapes():
    # Check that the final shape is just the input shape.

    data = [
        (),
        (1,),
        (3,),
        (0, 1),
        (0, 3),
        (1, 0),
        (3, 0),
        (1, 3),
        (3, 1),
        (3, 3),
    ]
    for shape in data:
        input_shapes = [shape]
        # Single input.
        assert_shapes_correct(input_shapes, shape)
        # Double input.
        input_shapes2 = [shape, shape]
        assert_shapes_correct(input_shapes2, shape)
        # Triple input.
        input_shapes3 = [shape, shape, shape]
        assert_shapes_correct(input_shapes3, shape)


def test_two_compatible_by_ones_input_shapes():
    # Check that two different input shapes of the same length, but some have
    # ones, broadcast to the correct shape.

    data = [
        [[(1,), (3,)], (3,)],
        [[(1, 3), (3, 3)], (3, 3)],
        [[(3, 1), (3, 3)], (3, 3)],
        [[(1, 3), (3, 1)], (3, 3)],
        [[(1, 1), (3, 3)], (3, 3)],
        [[(1, 1), (1, 3)], (1, 3)],
        [[(1, 1), (3, 1)], (3, 1)],
        [[(1, 0), (0, 0)], (0, 0)],
        [[(0, 1), (0, 0)], (0, 0)],
        [[(1, 0), (0, 1)], (0, 0)],
        [[(1, 1), (0, 0)], (0, 0)],
        [[(1, 1), (1, 0)], (1, 0)],
        [[(1, 1), (0, 1)], (0, 1)],
    ]
    for input_shapes, expected_shape in data:
        assert_shapes_correct(input_shapes, expected_shape)
        # Reverse the input shapes since broadcasting should be symmetric.
        assert_shapes_correct(input_shapes[::-1], expected_shape)


def test_two_compatible_by_prepending_ones_input_shapes():
    # Check that two different input shapes (of different lengths) broadcast
    # to the correct shape.

    data = [
        [[(), (3,)], (3,)],
        [[(3,), (3, 3)], (3, 3)],
        [[(3,), (3, 1)], (3, 3)],
        [[(1,), (3, 3)], (3, 3)],
        [[(), (3, 3)], (3, 3)],
        [[(1, 1), (3,)], (1, 3)],
        [[(1,), (3, 1)], (3, 1)],
        [[(1,), (1, 3)], (1, 3)],
        [[(), (1, 3)], (1, 3)],
        [[(), (3, 1)], (3, 1)],
        [[(), (0,)], (0,)],
        [[(0,), (0, 0)], (0, 0)],
        [[(0,), (0, 1)], (0, 0)],
        [[(1,), (0, 0)], (0, 0)],
        [[(), (0, 0)], (0, 0)],
        [[(1, 1), (0,)], (1, 0)],
        [[(1,), (0, 1)], (0, 1)],
        [[(1,), (1, 0)], (1, 0)],
        [[(), (1, 0)], (1, 0)],
        [[(), (0, 1)], (0, 1)],
    ]
    for input_shapes, expected_shape in data:
        assert_shapes_correct(input_shapes, expected_shape)
        # Reverse the input shapes since broadcasting should be symmetric.
        assert_shapes_correct(input_shapes[::-1], expected_shape)


def test_incompatible_shapes_raise_valueerror():
    # Check that a ValueError is raised for incompatible shapes.

    data = [
        [(3,), (4,)],
        [(2, 3), (2,)],
        [(3,), (3,), (4,)],
        [(1, 3, 4), (2, 3, 3)],
    ]
    for input_shapes in data:
        assert_incompatible_shapes_raise(input_shapes)
        # Reverse the input shapes since broadcasting should be symmetric.
        assert_incompatible_shapes_raise(input_shapes[::-1])


def test_same_as_ufunc():
    # Check that the data layout is the same as if a ufunc did the operation.

    data = [
        [[(1,), (3,)], (3,)],
        [[(1, 3), (3, 3)], (3, 3)],
        [[(3, 1), (3, 3)], (3, 3)],
        [[(1, 3), (3, 1)], (3, 3)],
        [[(1, 1), (3, 3)], (3, 3)],
        [[(1, 1), (1, 3)], (1, 3)],
        [[(1, 1), (3, 1)], (3, 1)],
        [[(1, 0), (0, 0)], (0, 0)],
        [[(0, 1), (0, 0)], (0, 0)],
        [[(1, 0), (0, 1)], (0, 0)],
        [[(1, 1), (0, 0)], (0, 0)],
        [[(1, 1), (1, 0)], (1, 0)],
        [[(1, 1), (0, 1)], (0, 1)],
        [[(), (3,)], (3,)],
        [[(3,), (3, 3)], (3, 3)],
        [[(3,), (3, 1)], (3, 3)],
        [[(1,), (3, 3)], (3, 3)],
        [[(), (3, 3)], (3, 3)],
        [[(1, 1), (3,)], (1, 3)],
        [[(1,), (3, 1)], (3, 1)],
        [[(1,), (1, 3)], (1, 3)],
        [[(), (1, 3)], (1, 3)],
        [[(), (3, 1)], (3, 1)],
        [[(), (0,)], (0,)],
        [[(0,), (0, 0)], (0, 0)],
        [[(0,), (0, 1)], (0, 0)],
        [[(1,), (0, 0)], (0, 0)],
        [[(), (0, 0)], (0, 0)],
        [[(1, 1), (0,)], (1, 0)],
        [[(1,), (0, 1)], (0, 1)],
        [[(1,), (1, 0)], (1, 0)],
        [[(), (1, 0)], (1, 0)],
        [[(), (0, 1)], (0, 1)],
    ]
    for input_shapes, expected_shape in data:
        assert_same_as_ufunc(input_shapes[0], input_shapes[1],
                             "Shapes: %s %s" % (input_shapes[0], input_shapes[1]))
        # Reverse the input shapes since broadcasting should be symmetric.
        assert_same_as_ufunc(input_shapes[1], input_shapes[0])
        # Try them transposed, too.
        assert_same_as_ufunc(input_shapes[0], input_shapes[1], True)
        # ... and flipped for non-rank-0 inputs in order to test negative
        # strides.
        if () not in input_shapes:
            assert_same_as_ufunc(input_shapes[0], input_shapes[1], False, True)
            assert_same_as_ufunc(input_shapes[0], input_shapes[1], True, True)


def test_broadcast_to_succeeds():
    data = [
        [np.array(0), (0,), np.array(0)],
        [np.array(0), (1,), np.zeros(1)],
        [np.array(0), (3,), np.zeros(3)],
        [np.ones(1), (1,), np.ones(1)],
        [np.ones(1), (2,), np.ones(2)],
        [np.ones(1), (1, 2, 3), np.ones((1, 2, 3))],
        [np.arange(3), (3,), np.arange(3)],
        [np.arange(3), (1, 3), np.arange(3).reshape(1, -1)],
        [np.arange(3), (2, 3), np.array([[0, 1, 2], [0, 1, 2]])],
        # test if shape is not a tuple
        [np.ones(0), 0, np.ones(0)],
        [np.ones(1), 1, np.ones(1)],
        [np.ones(1), 2, np.ones(2)],
        # these cases with size 0 are strange, but they reproduce the behavior
        # of broadcasting with ufuncs (see test_same_as_ufunc above)
        [np.ones(1), (0,), np.ones(0)],
        [np.ones((1, 2)), (0, 2), np.ones((0, 2))],
        [np.ones((2, 1)), (2, 0), np.ones((2, 0))],
    ]
    for input_array, shape, expected in data:
        actual = broadcast_to(input_array, shape)
        assert_array_equal(expected, actual)


def test_broadcast_to_raises():
    data = [
        [(0,), ()],
        [(1,), ()],
        [(3,), ()],
        [(3,), (1,)],
        [(3,), (2,)],
        [(3,), (4,)],
        [(1, 2), (2, 1)],
        [(1, 1), (1,)],
        [(1,), -1],
        [(1,), (-1,)],
        [(1, 2), (-1, 2)],
    ]
    for orig_shape, target_shape in data:
        arr = np.zeros(orig_shape)
        assert_raises(ValueError, lambda: broadcast_to(arr, target_shape))


def test_broadcast_shape():
    # tests internal _broadcast_shape
    # _broadcast_shape is already exercised indirectly by broadcast_arrays
    # _broadcast_shape is also exercised by the public broadcast_shapes function
    assert_equal(_broadcast_shape(), ())
    assert_equal(_broadcast_shape([1, 2]), (2,))
    assert_equal(_broadcast_shape(np.ones((1, 1))), (1, 1))
    assert_equal(_broadcast_shape(np.ones((1, 1)), np.ones((3, 4))), (3, 4))
    assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 32)), (1, 2))
    assert_equal(_broadcast_shape(*([np.ones((1, 2))] * 100)), (1, 2))

    # regression tests for gh-5862
    assert_equal(_broadcast_shape(*([np.ones(2)] * 32 + [1])), (2,))
    bad_args = [np.ones(2)] * 32 + [np.ones(3)] * 32
    assert_raises(ValueError, lambda: _broadcast_shape(*bad_args))


def test_broadcast_shapes_succeeds():
    # tests public broadcast_shapes
    data = [
        [[], ()],
        [[()], ()],
        [[(7,)], (7,)],
        [[(1, 2), (2,)], (1, 2)],
        [[(1, 1)], (1, 1)],
        [[(1, 1), (3, 4)], (3, 4)],
        [[(6, 7), (5, 6, 1), (7,), (5, 1, 7)], (5, 6, 7)],
        [[(5, 6, 1)], (5, 6, 1)],
        [[(1, 3), (3, 1)], (3, 3)],
        [[(1, 0), (0, 0)], (0, 0)],
        [[(0, 1), (0, 0)], (0, 0)],
        [[(1, 0), (0, 1)], (0, 0)],
        [[(1, 1), (0, 0)], (0, 0)],
        [[(1, 1), (1, 0)], (1, 0)],
        [[(1, 1), (0, 1)], (0, 1)],
        [[(), (0,)], (0,)],
        [[(0,), (0, 0)], (0, 0)],
        [[(0,), (0, 1)], (0, 0)],
        [[(1,), (0, 0)], (0, 0)],
        [[(), (0, 0)], (0, 0)],
        [[(1, 1), (0,)], (1, 0)],
        [[(1,), (0, 1)], (0, 1)],
        [[(1,), (1, 0)], (1, 0)],
        [[(), (1, 0)], (1, 0)],
        [[(), (0, 1)], (0, 1)],
        [[(1,), (3,)], (3,)],
        [[2, (3, 2)], (3, 2)],
    ]
    for input_shapes, target_shape in data:
        assert_equal(broadcast_shapes(*input_shapes), target_shape)

    assert_equal(broadcast_shapes(*([(1, 2)] * 32)), (1, 2))
    assert_equal(broadcast_shapes(*([(1, 2)] * 100)), (1, 2))

    # regression tests for gh-5862
    assert_equal(broadcast_shapes(*([(2,)] * 32)), (2,))


def test_broadcast_shapes_raises():
    # tests public broadcast_shapes
    data = [
        [(3,), (4,)],
        [(2, 3), (2,)],
        [(3,), (3,), (4,)],
        [(1, 3, 4), (2, 3, 3)],
        [(1, 2), (3,1), (3,2), (10, 5)],
        [2, (2, 3)],
    ]
    for input_shapes in data:
        assert_raises(ValueError, lambda: broadcast_shapes(*input_shapes))

    bad_args = [(2,)] * 32 + [(3,)] * 32
    assert_raises(ValueError, lambda: broadcast_shapes(*bad_args))


def test_as_strided():
    a = np.array([None])
    a_view = as_strided(a)
    expected = np.array([None])
    assert_array_equal(a_view, np.array([None]))

    a = np.array([1, 2, 3, 4])
    a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
    expected = np.array([1, 3])
    assert_array_equal(a_view, expected)

    a = np.array([1, 2, 3, 4])
    a_view = as_strided(a, shape=(3, 4), strides=(0, 1 * a.itemsize))
    expected = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
    assert_array_equal(a_view, expected)

    # Regression test for gh-5081
    dt = np.dtype([('num', 'i4'), ('obj', 'O')])
    a = np.empty((4,), dtype=dt)
    a['num'] = np.arange(1, 5)
    a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
    expected_num = [[1, 2, 3, 4]] * 3
    expected_obj = [[None]*4]*3
    assert_equal(a_view.dtype, dt)
    assert_array_equal(expected_num, a_view['num'])
    assert_array_equal(expected_obj, a_view['obj'])

    # Make sure that void types without fields are kept unchanged
    a = np.empty((4,), dtype='V4')
    a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
    assert_equal(a.dtype, a_view.dtype)

    # Make sure that the only type that could fail is properly handled
    dt = np.dtype({'names': [''], 'formats': ['V4']})
    a = np.empty((4,), dtype=dt)
    a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
    assert_equal(a.dtype, a_view.dtype)

    # Custom dtypes should not be lost (gh-9161)
    r = [rational(i) for i in range(4)]
    a = np.array(r, dtype=rational)
    a_view = as_strided(a, shape=(3, 4), strides=(0, a.itemsize))
    assert_equal(a.dtype, a_view.dtype)
    assert_array_equal([r] * 3, a_view)


class TestSlidingWindowView:
    def test_1d(self):
        arr = np.arange(5)
        arr_view = sliding_window_view(arr, 2)
        expected = np.array([[0, 1],
                             [1, 2],
                             [2, 3],
                             [3, 4]])
        assert_array_equal(arr_view, expected)

    def test_2d(self):
        i, j = np.ogrid[:3, :4]
        arr = 10*i + j
        shape = (2, 2)
        arr_view = sliding_window_view(arr, shape)
        expected = np.array([[[[0, 1], [10, 11]],
                              [[1, 2], [11, 12]],
                              [[2, 3], [12, 13]]],
                             [[[10, 11], [20, 21]],
                              [[11, 12], [21, 22]],
                              [[12, 13], [22, 23]]]])
        assert_array_equal(arr_view, expected)

    def test_2d_with_axis(self):
        i, j = np.ogrid[:3, :4]
        arr = 10*i + j
        arr_view = sliding_window_view(arr, 3, 0)
        expected = np.array([[[0, 10, 20],
                              [1, 11, 21],
                              [2, 12, 22],
                              [3, 13, 23]]])
        assert_array_equal(arr_view, expected)

    def test_2d_repeated_axis(self):
        i, j = np.ogrid[:3, :4]
        arr = 10*i + j
        arr_view = sliding_window_view(arr, (2, 3), (1, 1))
        expected = np.array([[[[0, 1, 2],
                               [1, 2, 3]]],
                             [[[10, 11, 12],
                               [11, 12, 13]]],
                             [[[20, 21, 22],
                               [21, 22, 23]]]])
        assert_array_equal(arr_view, expected)

    def test_2d_without_axis(self):
        i, j = np.ogrid[:4, :4]
        arr = 10*i + j
        shape = (2, 3)
        arr_view = sliding_window_view(arr, shape)
        expected = np.array([[[[0, 1, 2], [10, 11, 12]],
                              [[1, 2, 3], [11, 12, 13]]],
                             [[[10, 11, 12], [20, 21, 22]],
                              [[11, 12, 13], [21, 22, 23]]],
                             [[[20, 21, 22], [30, 31, 32]],
                              [[21, 22, 23], [31, 32, 33]]]])
        assert_array_equal(arr_view, expected)

    def test_errors(self):
        i, j = np.ogrid[:4, :4]
        arr = 10*i + j
        with pytest.raises(ValueError, match='cannot contain negative values'):
            sliding_window_view(arr, (-1, 3))
        with pytest.raises(
                ValueError,
                match='must provide window_shape for all dimensions of `x`'):
            sliding_window_view(arr, (1,))
        with pytest.raises(
                ValueError,
                match='Must provide matching length window_shape and axis'):
            sliding_window_view(arr, (1, 3, 4), axis=(0, 1))
        with pytest.raises(
                ValueError,
                match='window shape cannot be larger than input array'):
            sliding_window_view(arr, (5, 5))

    def test_writeable(self):
        arr = np.arange(5)
        view = sliding_window_view(arr, 2, writeable=False)
        assert_(not view.flags.writeable)
        with pytest.raises(
                ValueError,
                match='assignment destination is read-only'):
            view[0, 0] = 3
        view = sliding_window_view(arr, 2, writeable=True)
        assert_(view.flags.writeable)
        view[0, 1] = 3
        assert_array_equal(arr, np.array([0, 3, 2, 3, 4]))

    def test_subok(self):
        class MyArray(np.ndarray):
            pass

        arr = np.arange(5).view(MyArray)
        assert_(not isinstance(sliding_window_view(arr, 2,
                                                   subok=False),
                               MyArray))
        assert_(isinstance(sliding_window_view(arr, 2, subok=True), MyArray))
        # Default behavior
        assert_(not isinstance(sliding_window_view(arr, 2), MyArray))


def as_strided_writeable():
    arr = np.ones(10)
    view = as_strided(arr, writeable=False)
    assert_(not view.flags.writeable)

    # Check that writeable also is fine:
    view = as_strided(arr, writeable=True)
    assert_(view.flags.writeable)
    view[...] = 3
    assert_array_equal(arr, np.full_like(arr, 3))

    # Test that things do not break down for readonly:
    arr.flags.writeable = False
    view = as_strided(arr, writeable=False)
    view = as_strided(arr, writeable=True)
    assert_(not view.flags.writeable)


class VerySimpleSubClass(np.ndarray):
    def __new__(cls, *args, **kwargs):
        return np.array(*args, subok=True, **kwargs).view(cls)


class SimpleSubClass(VerySimpleSubClass):
    def __new__(cls, *args, **kwargs):
        self = np.array(*args, subok=True, **kwargs).view(cls)
        self.info = 'simple'
        return self

    def __array_finalize__(self, obj):
        self.info = getattr(obj, 'info', '') + ' finalized'


def test_subclasses():
    # test that subclass is preserved only if subok=True
    a = VerySimpleSubClass([1, 2, 3, 4])
    assert_(type(a) is VerySimpleSubClass)
    a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,))
    assert_(type(a_view) is np.ndarray)
    a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
    assert_(type(a_view) is VerySimpleSubClass)
    # test that if a subclass has __array_finalize__, it is used
    a = SimpleSubClass([1, 2, 3, 4])
    a_view = as_strided(a, shape=(2,), strides=(2 * a.itemsize,), subok=True)
    assert_(type(a_view) is SimpleSubClass)
    assert_(a_view.info == 'simple finalized')

    # similar tests for broadcast_arrays
    b = np.arange(len(a)).reshape(-1, 1)
    a_view, b_view = broadcast_arrays(a, b)
    assert_(type(a_view) is np.ndarray)
    assert_(type(b_view) is np.ndarray)
    assert_(a_view.shape == b_view.shape)
    a_view, b_view = broadcast_arrays(a, b, subok=True)
    assert_(type(a_view) is SimpleSubClass)
    assert_(a_view.info == 'simple finalized')
    assert_(type(b_view) is np.ndarray)
    assert_(a_view.shape == b_view.shape)

    # and for broadcast_to
    shape = (2, 4)
    a_view = broadcast_to(a, shape)
    assert_(type(a_view) is np.ndarray)
    assert_(a_view.shape == shape)
    a_view = broadcast_to(a, shape, subok=True)
    assert_(type(a_view) is SimpleSubClass)
    assert_(a_view.info == 'simple finalized')
    assert_(a_view.shape == shape)


def test_writeable():
    # broadcast_to should return a readonly array
    original = np.array([1, 2, 3])
    result = broadcast_to(original, (2, 3))
    assert_equal(result.flags.writeable, False)
    assert_raises(ValueError, result.__setitem__, slice(None), 0)

    # but the result of broadcast_arrays needs to be writeable, to
    # preserve backwards compatibility
    for is_broadcast, results in [(False, broadcast_arrays(original,)),
                                  (True, broadcast_arrays(0, original))]:
        for result in results:
            # This will change to False in a future version
            if is_broadcast:
                with assert_warns(FutureWarning):
                    assert_equal(result.flags.writeable, True)
                with assert_warns(DeprecationWarning):
                    result[:] = 0
                # Warning not emitted, writing to the array resets it
                assert_equal(result.flags.writeable, True)
            else:
                # No warning:
                assert_equal(result.flags.writeable, True)

    for results in [broadcast_arrays(original),
                    broadcast_arrays(0, original)]:
        for result in results:
            # resets the warn_on_write DeprecationWarning
            result.flags.writeable = True
            # check: no warning emitted
            assert_equal(result.flags.writeable, True)
            result[:] = 0

    # keep readonly input readonly
    original.flags.writeable = False
    _, result = broadcast_arrays(0, original)
    assert_equal(result.flags.writeable, False)

    # regression test for GH6491
    shape = (2,)
    strides = [0]
    tricky_array = as_strided(np.array(0), shape, strides)
    other = np.zeros((1,))
    first, second = broadcast_arrays(tricky_array, other)
    assert_(first.shape == second.shape)


def test_writeable_memoryview():
    # The result of broadcast_arrays exports as a non-writeable memoryview
    # because otherwise there is no good way to opt in to the new behaviour
    # (i.e. you would need to set writeable to False explicitly).
    # See gh-13929.
    original = np.array([1, 2, 3])

    for is_broadcast, results in [(False, broadcast_arrays(original,)),
                                  (True, broadcast_arrays(0, original))]:
        for result in results:
            # This will change to False in a future version
            if is_broadcast:
                # memoryview(result, writable=True) will give warning but cannot
                # be tested using the python API.
                assert memoryview(result).readonly
            else:
                assert not memoryview(result).readonly


def test_reference_types():
    input_array = np.array('a', dtype=object)
    expected = np.array(['a'] * 3, dtype=object)
    actual = broadcast_to(input_array, (3,))
    assert_array_equal(expected, actual)

    actual, _ = broadcast_arrays(input_array, np.ones(3))
    assert_array_equal(expected, actual)

Youez - 2016 - github.com/yon3zu
LinuXploit